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ABSTRACT. In this paper, we study dynamics of neural network with memory where the updating
consider a longer history of each site and the set of interaction matrices is quasi-palindromic. For
parallel and sequential iteration, we define Lyapunov functionals which permits us to characterize the
periods behaviour and explicitely bounds the transient lengths of quasi-palindromic neural networks.
For these networks, due to the quasi-palindromy, the dynamic is robust with respect to a class of
small changes of the interactions matrices. This property is important in many applications of neural
networks such as association, optimization and pattern recognition.

RESUME. Nous étudions la dynamique des réseaux de neurones avec mémoire ol la mise a jour
considére une suite d’états de chaque site et ou 'ensemble des matrices d’interaction est quasi-
palindromique. Nous définissons pour l'itération paralléle et I'itération série des fonctionnelles de Lya-
punov qui nous permettent de caractériser les périodes et de borner les longueurs des transitoires des
réseaux de neurones étudiés. La dynamique de ces réseaux, grace a la quasi-palindromie, est assez
robuste face a certaines perturbations des interactions entre neurones. Cette propriété est impor-
tante dans de nombreuses applications des réseaux de neurones telles les mémoires associatives,
I'optimisation et la reconnaissance.

KEYWORDS : Neural network with memory, Transient length, Period, Lyapunov functional, Quasi-
palindromic.

MOTS-CLES : Réseau de neurones & mémoire, Longueur de transitoire, Période, Fonctionnelle de
Lyapunov, Quasi-palindromique.
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1. Introduction

Neural network were introduced by Mc Culloch and Pitts [15] and they are seen as
merely one example of a class of complex system [6]. A neural network is a statistical
construct adept at inferring functions and thereby mapping inputs to corresponding out-
puts. Neural networks are more than mere statistical techniques; a neural network meeting
certain simple preconditions becomes Turing universal. Because of Turing universality,
the neural network becomes, in a computational theoretic sense, an alternative model
to Turing machines and their Von Neumann descendants. Nneural networks have been
studied extensively as tools for solving various problems such as classification, speech
recognition, image processing [7]. These applications rely on the stability of existing
fixed points and cycles of iteration graphs of neural networks.

Neural network is usually implemented by using electronic components or is simu-
lated in software on a digital computer. One way in which the collective properties of a
neural network may be used to implement a computational task is by way of the concept
of energy minimization. The Hopfield network has attracted a great deal of attention in
the literature as a content-addressable memory [12].

Caianiello [1] has suggested that the dynamic behaviour of a neuron in a neural net-
work with k-memory can be modeled by the following recurrence equation:

xi(t)—l(ZZaij(s)mj(ts)bi), t>k (1)

j=1s=1
where
— 4 is the index of a neuron, 7 = 1, ..., n.
—x; (t) € {0,1} is a variable representing the state of the neuron 7 at time .

— k is the memory length, i.e., the state of a neuron ¢ at time ¢ depends on the states
zj(t—1),..,z; (t — k) assumed by all the neurons (j = 1,...,n) at the previous steps
t—1,..,t—k((k>1).

—aij(s) (1 < i,7 <nand1l < s < k) are real numbers called the weighting
coefficients. More precisely, a;; (s) represents the influence of the state of the neuron j
at time ¢t — s on the state assumed by the neuron ¢ at time ¢.

— b; is a real number called the threshold.

— 1 is the Heaviside function: 1(u) =0if u < 0,and 1 (u) =1ifu >0

For evolution Eq.(1), Goles [8] show that if the class of interaction matrices is palin-
dromic the periods 7" divide k + 1. Tchuente [18] generalized the preceding result by
showing that the parallel iteration of a network of automata N can be sequentially sim-
ulated by another network N’ whose local transition functions are the same as those of
N. In [17], the transient length of the trajectory generated by evolution Eq.(1), when
the class of interaction matrices is palindromic, was bounded. By implementing a bi-
nary Borrow-Save counter, Ndoundam and Tchuente [16] exhibit a Caianiello automata
network of size 2n + 2 and memory length k& which describes a cycle of length k2.
Evolution Eq.(1) corresponds to a parallel updating of neurons. The sequential updat-
ing of neural network with memory was introduced in [17] where it was shown that if
the class of interaction matrices is palindromic and the diagonals of matrices are equals,
with non-negative elements, then the periods 7' of the neural network iterated sequen-
tially with k-memory satisfy T'|k. The dynamics generated by Eq.(1) have been studied
for some particular one-dimensional systems: when n. = 1, one obtains a single neuron
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(proposed by Caianiello and De Luca [2]) with memory that does not interact with other
neurons. When & = 1, one obtains a Mc Culloch and Pitts neural network [15]. It has
been proved ([9, 10]) that Mc Culloch and Pitts neural networks defined by symmetric
matrices admit Lyapunov functional. Later, this result was proved for quasi-symmetric
weights generalizing the symmetry property [10, 14].

In complex systems theory, the prevailing view is that a system’s regime of dynamical
behaviour largely determines the system’s capacity to process information, perform com-
putations, and generally exhibit sophisticated behaviour and self-organization of complex
structure [11]. Only systems on an extended transient trajectory are capable of evolving
in a way that encodes significant information. Moreover, strong parallels can be drawn
between the behaviour of dynamical systems and the properties of computational systems
[5]. Our motivation for studying the dynamics generated by iteration of neural network
with memory is to examine the transient and cycle lengths that can be generated by it in
the special case where non-trivial regularities on coupling coefficients are satisfied. Our
approach consists to define appropriate Lyapunov functional [13].

It is well known that the collective dynamics of neural networks essentially relies
on connectivity properties of the systems; Mc Culloch and Pitts neural networks with
symmetric connection have convergent dynamics [3, 13]. Whereas, the dynamics of such
asymmetric neural networks can be diverse and can demonstrate convergence, oscillation
or chaotic behavior [3]. Stable and convergent dynamics is an essential property of neural
networks and is important in many applications of neural networks such as association,
optimization and pattern recognition [3, 13]. Stability means that the concerned neural
network possesses some attractive equilibrium points for every constant input and every
interaction matrices of certain type. We study in this paper neural networks with a quasi-
palindromic set of interaction matrices and show that, these networks always converge to
equilibrium points of length related to the length of the memory.

The remainder of the paper is organized as follows: in Section 2, some definitions
and notations are given. In Section 3, we characterize the periods and bound the transient
lengths of parallel iteration of neural networks with memory of which the set of interac-
tion matrices is quasi-palindromic. The same study is made in Section 4 for sequential
iteration of neural networks with memory of which the set of interaction matrices is quasi-
palindromic. Concluding remarks are stated in Section 5.

2. Definitions and notations

A neural network N iterated with a memory of length & is definedby N = (I, A (1), ...
A(k),b), where I = {1,...,n} is the set of neurons indexes, A (1) , ..., A (k) are matrices
of interactions and b = (b; : i € {1, ...,n}) is the threshold vector. Let {z (t) € {0,1}" :
t >0} be the trajectory starting from z (0),..., z (k — 1); since {0,1}" is finite, this
trajectory must sooner or later encounter a state that occurred previously - it has en-
tered an attractor cycle. The trajectory leading to the attractor is a transient. The pe-
riod (T) of the attractor is the number of states in its cycle, which may be just one
- a fixed point. If (x(0),...,x (T — 1)) is a T-cycle, then the T-cycle at site i is de-
noted X; = (x; (0),...,z; (T — 1)). The period of X is denoted v (X;), by definition
~v(X;)|T. The transient length of the trajectory is noted 7 (z (0), ...,z (k —1)). The
transient length of the neural network is defines as the greatest of transient lengths of
trajectories, that is:

T(AQ1),...,A(k),b) =maz{r (z(0),...,z(k—-1)):z(t) € {0,1}", 0<t <k -1}
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The updates of the state values of each neuron depends on the type of iteration associ-
ated to the model. The parallel iteration consists of updating the value of all the neurons
at the same time. The sequential iteration consists of one by one updating the neurons in
a pre-established periodic order (i1, %2, ..., 5 ), where I = {i1,i2,...,%n}.

Definition 1 A set of interaction matrices (A (1) , ..., A (k)) is quasi-palimdromic if Vi, j €
I,3X\;,\; > Osuch thatVs = 1,....k, Nja;;(k — s+ 1) = Xja (s ) i.e., if A isthe diag-
onal matrix of \; (Nii = Ny Nij = 0Vi # j), ANA(k — s + 1) = A.A(s)". By extension
a neural network N = (I, A(1),...,A(k),b) is quast-palzndromlc if (A(1),...,A(k))
is quasi-palimdromic.

Remark that when \; = 1,V7 € I, we get a palindromic set of interaction matrices. Hence
quasi-palindromy can be interpreted as a direct generalization of palindromy. Note also
that if £ = 1, quasi-palindromy corresponds to quasi-symmetry [4, 10, 14].

The notion of Lyapunov functional has been introduced in the study of neural networks
in order to study the dynamics of symmetric and quasi-symmetric Mc Culloch and Pitts
neural networks [10, 13].

Definition 2 [10] For a dynamics x(t + 1) = F(z(t),z(t — 1), ...) a real functionnal
E(x(t)) is called a Lyapunov functional if it is decreasing: E(x(t + 1)) < E(x(t)) for
anyt > 1.

From this definition, it is direct to show that, if (x (0), ..., (T' — 1)) is a T-cycle, then
necessarily the functional is constant on it, i.e. F(z(0 )) = E(x(T — 1)). The exis-
tence (or non-existence) of Lyapunov functional driving the network dynamics is extremly
sensitive to small perturbations on the weights, i.e., small alterations to the interaction ma-
trices may change completely the dynamic behaviour of the network [10]. However the
Lyapunov functional for quasi-palindromic neural networks are very robust in the sense
that any neural network with interaction matrices derived from the initial ones by local
operations which preserve the quasi-palindromy also accepts the same kind of Lyapunov
functional, this time acting on the new interaction matrices and threshold vector.

Let N =(I,A(1),...,A(k),b) aneural network with a memory of length k. Let us

note:
e; = min {

We can assume that:

n k
Zzalj (8) Uj (5) —bi| U(S) € {Oa 1}7:,’ s=1, ak} 2

j=1s=1

ZZOL” s)u; #by, Vi€, Vu=(u1,...,u,) €{0,1}" 3)

J=1s=1

n k
Infact, if > > a;; (s)u; = b, it suffices to make small change in the hyperplane coef-
j=1s=1
ficients, or the threshold, in oder to avoid this situation without modifying the dynamics
of the network [10] We will use the following notatlons diag (A(s)) = (ai; (s) i € 1),

A ()| = Z Z la;j (s)] for s = 1,... k, ||ul| = Z |u;| for any vector v € R™ and
i=1j=1 i=1
1=(1,..,1)"
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3. Parallel iteration

Let us consider the parallel iteration of a finite neural network with memory N =
(I,A(1),...,A(s),b) give by Eq.(1). Let A = (A\;:i € 1) (Vi € I, X\; > 0) and let
{z (t) : t > 0} be a trajectory of the parallel iteration, we define the following functional

fort > k:
Epor (z (1) =— Z (i x; (t — s) (Z i Aiaij (8")z; (t—s— s')) — Aib; Zml (t — s))
i=1 \s=0 j=1s/=1 s=0

)

Proposition 1 The functional E,,, (v (t)) is a strictly decreasing Lyapunov functional
for the parallel iteration of quasi-palindromic neural network with memory.

Using the preceding functional, we will characterize the periods of neural networks.

Theorem 1 The periods T of parallel iteration of quasi-palindromic neural networks
with memory satisfies T'|k + 1.

We will now bound the transient length of neural networks. Denotes by X the set of all
initial conditions which do not belong to a period of length &k + 1:

X = {2 (0) € {0,1}" such that = (0) # = (k + 1)}
If X # () define:
e=min{—(E(z(k+1)) - E(z(k))): z(0) € X} 5)
We note e = 0 if X = 0.

Theorem 2 The transient length Tpq, (A (1) , ..., A(k), X, b) of parallel iteration of quasi-
palindromic neural network with memory is bounded by:

Tpar (A(1) ..., A(k),\b) < L ((k:+2) H(Qb— zi; A(s) I) AH

s=1

k n . (6)
+k > A A(s)]] —QkZ)\iei> if e>0
s=1 i=1

Tpar (A1), A(B), A\b)= 0 if e=0

Remark 1 Theorem 1 and Theorem 2 are generalization of some results established in
[17] for palindromic neural networks with memory.

Remark 2 For £ = 1, one get a Mc Culloch and Pitts neural network for which the
interaction matrix is quasi-symmetric and our results can be seen as a generalization of
those obtained in [10].
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4. Sequential iteration
The sequential updating of the neural network with memory is written [17]:

i—1 k
<Z aij (s)zj (t+1—5) +22a,] j(t—s)— bi) (7
1

j=1s= j=1i s=1

Let A= (N :ie€I)Vi eI, A\; >0). Let{z (t) : ¢ > 0} be a trajectory of the sequential
iteration, we define the following functional for ¢ > k (k > 1):

Bula(®)= - % (z 5t =5 Ny (s (-5 = +1)

—l—le(t—&—l—s)E Z Aiasj (s ’):L’j(t—s—s'—l—l)—/\ibikilxi(t—s))
j>is’'=1 s=0
@)

Propeosition 2 f the class of interaction matrices (A (s) : s = 1,..., k) satisfies:

—diag (A(s)) =diag (A(s+1)) Vs=1,..,k—1
then the functional Es.q (x (t)) is a strictly decreasing Lyapunov functional for the se-
quential iteration of quasi-palindromic neural network with memory.

We will now characterize the periods of trajectory generated by neural networks.

Theorem 3 If the class of interaction matrices (A (s) : s = 1, ..., k) satisfies:

—diag (A(s)) =diag(A(s+1)) Vs=1,.., k-1

-Viel, aii(k) >0
then the periods T of sequential iteration of quasi-palindromic neural networks with mem-
ory satisfies T'|k.

To study the transient phase, we will work with another Lyapunov functional derived from
Egeq (2 (1)). Define:

Er, (z(¥) = —é(; (2951(75—5)—1); '21)\ iaij (8") (2w (t —s—s +1)—1)
+k71(2xi(t—|—1—s)—1)z‘ Z Xiaij () 2z (t—s—s' +1) —1)
—1—2::1 ((2)\ b; — 2:: Zi: Aiaij (s )) I:X;:: (2z; (t—s)—l))
+3 i Nais(s)(2ai(t — 5+ 1) — 1)

)
Proposition 3 If the class of interaction matrices (A (s) : s = 1, ..., k) satisfies:
—diag (A(s)) =diag(A(s+1)) Vs=1,.,k—1
~-Viel, ay(k)>0
then the functional I, (x (1)) is a strictly decreasing Lyapunov functional for the se-
quential iteration of quasi-palindromic neural network with memory.

Now, we assume that the set of interaction matrices (A (s) : s = 1,..., k) satisfiy the
following conditions:
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— The diagonals of interaction matrices are equivalent:
diag (A (s)) = diag(A(s+1)) for s=1,...,k—1 (10)
— The elements of these diagonals are non-negative:
Viel, aii(k) >0 (1D

Let us denotes by X the set of all initial conditions which do not belong to a period of
length k:
X' ={z(0) € {0,1}" such that z (0) # z (k)}
Recall that X’ is empty iff the transient length of the neural network is null. If X’ # ()
define:
e =min{—(E(z(k)) —E(z(k—-1))):z(0) e X'} (12)
We note ¢/ = 0 if X’ = 0.

Proposition 4 Let {z (t) : t > 0} be a trajectory for a quasi-palindromic neural network
with k-memory iterated sequentially; E?, (x (t)) is bounded by:

seq

Eia@®)> =5 5 5 (= s D fag ()] = 35 5 35 (k= 8) s (o)

i=175>is=

(13)

—kH(%—iA(s).i) H k| diag(A(k)).Al

s=1
and A .
Eleq (x () < 21 D) 21(8— DAilaij ()| + _Z 2; Z sAilai;(s)]

i=1j<is= i=1j5>is=1

(14)

2k 3" Nes + k||diag( A(k))A
=1

We will now bound the transient lengths of the sequential iteration of quasi-palindromic
neural networks with memory.
Theorem 4 [f the class of interaction matrices (A (s) : s = 1, ..., k) satisfies:

—diag (A(s)) =diag(A(s+1)) V¥s=1,..,k—1

-V S I, (077 (/f) Z 0
then the transient length Tscq (A (1), ..., A (k) , \, b) of sequential iteration of neural net-
work with memory is bounded by:

rea (A(L) s AR AD) < <H <2b - élA(s) .I> AH + él 1AA(s)]

12 | diag(A(k)).Al —2 3 Aiei> if ¢ >0 U9
i=1

Teeg (A1), ., A(K),\b)= 0 if € =0

Remark 3 When \; = 1,V: € I, it was shown in [17] for sequential iteration that, the
conditions given by Eqgs.(10), (11) are necessary so that the periods divide k.
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5. Conclusion

We study neural networks of Caianiello under some assumptions on interaction ma-
trices. For parallel iteration, using Lyapunov functional, we characterize the periods and
bounds explicitely the transient lengths of quasi-palindromic neural networks. These re-
sults generalize those obtained for palindromic Caianiello neural networks, for symmetric
and quasi-symmetric Mc Culloch and Pitts neural networks. For sequential iteration we
characterize the periods and bounds explicitely the transient lengths of quasi-palindromic
neural networks of which the diagonals of interaction matrices are equals and their ele-
ments are non-negative.

For future work, it would be interesting to study the stability of the quasi-symmetric
neural networks with memory to perturbations in order to determine the conditions in
which they can be used for applications such as association, optimization and pattern
recognition.
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