Cari 2008+ 22/08/08 17:12 Page 241 $

The incorporation of topological derivative
into level set methods for cavity identification

Kamel Mezlini***, Hend Ben Ameur*, Francois Clement™*

“ENIT-LAMSIN
Université Tunis El Manar, B.P. 37, 1002 Tunis-Belvédere
Tunisia

**INRIA Paris - Rocquencourt
Domaine de Voluceau-Rocquencourt
B.P. 105 78153 Le Chesnay Cedex
France

kamel.mezlini@lamsin.rnu.tn, hend.benameur@enit.rnu.tn,  Francois.Clement@inria.fr

ABSTRACT. The present paper is concerned with the identification of cavities of different conductiv-
ities included in a two-dimensional domain by measurments of voltage and curents at the boundary.
We refomulate the given identification problem as a shape optimization problem. The representation
of the shape of the boundary and its evolution during an iterative reconstruction process is achieved
by the level set methods. we investgated the use of topological derivative in combination with the level
set methods for shape optimization. The topological derivative indicates the appropriate location of
cavities. Finally the shape is corrected by level set methods.

RESUME. Le présent papier porte sur 'identification des cavités inclues dans un domaine bi-dimensionnel
de conductivité non constante par des mesures de la tension et du courant électrique sur la frontiere.
Nous le reformulons comme un probleme d’optimisation de forme. La représentation de la géométrie

et de son évolution au cours d’'un processus itératif de reconstruction est réalisée par la méthode
“level set”. Nous proposons la combinaison du gradient topologique avec la méthode level set pour
I'optimisation de forme, le gradient topologique nous indique I'emplacement des cavités. Enfin, la
forme est corrigée par la méthode “level set”.
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1. Introduction and problem statement

Suppose that €2 is an electrically conducting body with boundary 992 = T'". Let p
denote the conductivity of the medium, u the potential and g the known boundary sources.
The governing equations are

—div(pVu) = 0 in Q

ou (1
— = g on I

on

where n is the unit outer normal direction.

We assume that 2 can be decomposed into two disjoint subdomains QT and Q~ and
that the value of the conductivity is known in each of them.

Let I" be the region of observation. The problem consists in determining the interface
Y. between Q1 and Q~ from measurements u* of the potential function v on I'. There are
however, numerous other applications leading to similar formulations.

The conductivity u is supposed to be piecewise constant and is defined by

+ +
_oumxzefd
u(x)—{ uo e

We assume that €2~ is the finite union of simply connected open sets in €.

Their boundary X represents the interface between the two open domains Q+ and 2,
and it is assumed to be the union of closed C? curves. We further assume that the interface
Y is strictly containedin Q = QT U Q™.

If 4~ is oo, then 2~ is a perfect conductor. In the case 2~ consists only of one connected
component, the boundary value problem (1) reduces to

—Au = 0 in QF
% ’ = 0 on X Q)
n = g on T

The problem under consideration is a special case of the general conductivity reconstruc-
tion problem and is severely ill-posed. We emphasize that we focus in the present paper
on exact measurements and do not consider noisy data.

The geometric inverse problem can be formulated as minimization of least-square
mis-fit function over a class of unknown interface. The shape optimization involves min-
imizing cetain cost function .J over a class of admissible boundary shapes.

In general we consider the minimization of the form

inf J(X),

PIHDIPP)

where Y4 is the admissible class of interfaces. Usually interface identification problems
are ill-posed.
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1.1. Shape derivatives

Like the Gateaux and Fréchet derivatives in a analytic function framework, the shape
derivative is a fundamental tool for geometric inverse problems, since it allows to charac-
terize extrema and yields directions of steepest descent. For a comprehensive introduction
to shape derivatives we refer to [20]. The intention of this section is to give a very brief
introduction into shape derivatives.

In the following, we suppose without restriction of generality that ¥ is piecewise C2.

Given a smooth vector field V' (¢, x), it gives rise to a family of transformations T;(X)
via the differential equation

p(t) = V(tat
{0 = vieww) )

where every point X € Q is mapped by T;(X) to the solution z(¢, X) of (3) at time t, i.e.
T:(X)(z) = x(t, X). This difines the perturbed domain by

0, = T,(Q)

This parameterization of domains was first studied by [12] and enable us to view
geometric objects in the usual analytic function contex.
Let v; be a function defined on the domain Q, (e.g. , v; = u(£), where u(€);) is the
solution to (2) with Q replaced by €2;). Then we can consider

v = ou =0 shape derivative
ot
ovt Oy 0Ty
o
It is well known that there is a relation between the material derivative v® and the
shape derivative v’ ( see[20] ), namely:

lt=o material derivative

vV =0 — VoV

Before we start to calculate the shape derivative for our problem we note that in our
problem class of cavity identification we want that the boundary 92 remains unchanged
within the family of transformations 7;. Hence, we may restrict our attention to velocity
fields satisfying V.n = 0 on 092 \ ¥, where n denotes the normal vector to the boundary
00\ . Furthermore, it suffices to consider only transformations 7} that change the
position of X but do not "rotate" 3, which results into vector fields V' that have zero
tangential part along 3, i.e.
Vig = (Vin)n = Vyn.

2. Topological derivatives

Alternative approaches to the solution of shape reconstruction problems have been
considered recently, such as the topological sensitivity analysis was introduced by Schu-
macher [17], Sokolowski and Zochowski[ 19]. The given approach is based on the analysis
of the topological sensitivity. It provides an asymptotic expansion of a cost function with
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respect to a small topological perturbation of the domain. To present the basic idea, we
consider a domain of R? , d =2, 3 and J(Q) = J(Q,uq) a cost function to be mini-
mized, where ug is the solution to a given PDE problem defined in 2. For ¢ > 0, let
Qe = Q\ (2o + ew) be the domain obtained by removing a small part (z¢ + ew) from
Q, where 2 and w C R? is a fixed bounded domain containing the origin. Then, an
asymptotic expansion of the function J is obtained in the following form :

J(Qe) = J(Q) + fe)g(xo) + o(f(€))
f(e) >0 Ve >0, llir(l)f(e) =0

The function ¢ is called the topological sensitivity or topological gradient. g(x() provides
an information for creating a small hole located at zo: if g(xo) < 0, then J(€2,) < J(Q)
for small e.

It can be used as a descent direction of the domain optimization process. Obviously,
if we want to minimize .J, the "best" place to create an infinitesimal hole is there where
g(x) is the most negative.

3. Level Set Methods

Another alternative approaches to the solution of shape reconstruction problems have
been considered recently, the level set method (cf [16]) can be applied , which we there-
fore consider in this paper. The level set approach was introduced by Osher and Sethian
[14] for evolving geometries. The main idea is to represent an evolving front as the zero
level set of a continuous function ®,

Y ={x e R"/®(z,t) = 0}

A weak formulation of geometric motion with normal speed V/, is given by the Hamilton-

Jacobi equation

0P n

§+Vn|vfb| = 0 on R XR+, (4)
®(z,0) = Pyp(z) on R

in the sense that a viscosity solution for this Hamilton-Jacobi equation (4) has to be com-
puted. We refer to the monograph by Lions [11] and the paper by Crandall et al. [7]
for details on the notion of viscosity solution. Due to the implicit representation on an
Eulerian grid, the level set approach does not introduce any a priori assumptions on the
geometry and therefore is receiving growing attention in the context of geometric inverse
problems (cf, e.g., [3, 4, 5, 6,9, 15, 16]) and shape optimization (cf, e.g., [1, 18] ).

The basic idea of level set methods for inverse and optimization problems (c¢f[3, 9, 13, 15,
16]) is to choose the velocity in such a way that a decrease of the objective functional is
achieved, which resembles the classical speed method in shape optimization (cf [12, 20]),
but the weak formulation via the level set method allows for more general evolution and
in particular for topological changes such as splitting or merging of domains.

The numerical solution may not be unique. There can be several local and global minima.
Starting with an initial guess that contains all possible expected shapes, the algorithm
typically finds an envelope of all shapes representing the minima (cf, e.g.[9]).
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4. Shape and Topological gradient calculs

Considering the so-called Kohn-Vogelius criterion as the cost function [10]. The idea
is to minimize the misfit between the solutions of two forward problems. Since the bound-
ary conditions u* and g are over specified, one can define for any X the following auxillary

problems:
e Dirichlet problem
—Au p = 0 in QF
up = 0 on X (5)
uUp = u* on T
e Neumann problem
—Au N = 0 in Q+
UN = 0 on X
au—N = on I ©
on -7

As mentioned before, the idea behind the Kohn-Vogelius criterion is to minimize the
misfit between the solutions of the Dirichlet and Neumann problems. Therefore, the cost
function for this inverse problem is given by the following functional

J) = gllup (%) — un ()3,

Observe that the solutions of both Dirichlet and Neumann problems are the same in
all the domain only when ¥ = X*. Therefore, if we get the domain in which the cost
functional vanishes, then we find the set of unknown cavity 3*, which is the solution of
our inverse problem.

The shape derivative of the objective functional is J [20]

J'(2,V) = lim JE) = J(E)

= — / (VupVwp + VunyVwn)Vyds,
t—0 t )

where the adjoint problems are:

—AwD = Up —UN in Q+
wp = 0 on X @)
wp = 0 on I
—Awy = —(up —wuy) in QF
wWN = 0 on X (8)
(9UJN
—_— 0 on I
on

We consider the velocity on ¥, as :
V, = VupVwp + VuyVuyn

To compute the corresponding topological gradient, we need to solve numerically up and
un the two direct problems and wp and wy the two adjoint problems on the safe domain
Q: The topological gradient for the case of Dirichlet boundary conditions on the boundary
of the ball as in [8, 2]

9(w0) = up(zo)wp (o) + Vun (o) Vwn (o)
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5. Numerical algorithm

Phase I: Initialization

e solve the direct problems (5) (6) for up, ux and their associated adjoint problems (7)
(8) whose solutions are wp and wy in £,

e compute the topological sensitivity g.

eset Qy = Q\ {z € Q,g(x) < 7}, where the constant 7 is chosen by the user.

Phase 11

To solve the Hamilton-Jacobi equation (4) numerically, we proceed as follow:
1- The initial level set function &3 which corresponds to the initial form provided by
Phase I :

S = {a € R 8y (x) = 0}

2- For k > 0 and until the algorithm converges.
e Solve for u¥,, u%. solutions of the direct problems (5) (6) and w¥,, wk; solutions of the
adjoint problems (7) (8) posed in Q.
e Compute J(Zy).
e Evaluate the normal velocity V on 3.
e Extend the velocity on all 2.
e Deformation of X3 = {z € R?; ®*(z) = 0} by la solving the Hamilton-Jacobi equa-
tion, the new geometrie ¥ is donne by la level set fonction ®**1 solution of the
equation:
(I)k+1 _ (I)k

Vi |[VOF| =0
AL K|V O

When starting from intial function ®* (x) with velocity Vi, |V®¥| evaluated with WENO
(weighted essentially non-oscillatory) and Aty is chosen as:

h
At = ——.
2[|Vellso
3-Due to the possible poor approximation of the normal at the zero level set we addition-
ally reinitialized the level set function to the signed distance function, so we solve the
problem.

|
o

{ aa—(f + signe(®o)(|Ve| — 1)
(ID(O,l‘) = (I)O(x)

6. Numerical results

In this section we compare the results of the classical level set method with initial
guess (without phase I) to the proposed method that incorporates topological gradient in
level set method. We perform all numerical tests on a fixed domain Q = [—1,1]? with
cartesian grid 80 by 80, whichis used to discretize the PDE (5) ,(6), (7) and (8) by the
immersed interface method [9] and the Hamilton-Jacobi equation (4).
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Figure 1. The partial differential equations and boundary conditions.

(1,1)

(1, -1)

As initial guess we take for all our test exemples a circle with radius » = 0.7 and

centred at the origin

(0,0).

6.1. Identification of two ellipses

T2 G5 o0 w2 0 02 o4 s ar o

T as 25 w4 92 0 02 04 05 08 1

Figure 2. Left to right: Result using classical level set method of the computed solution
after 2000 steps. Result using level set method combined with topological gradient of the

computed solution after 100 steps. Isovalues and the plot of topological gradient

6.2. Identification of for circles

N os 05 o4 a2z 0 0z o4 06 08 1

Figure 3. Left to right: Result using classical level set method of the computed solution
after 2000 steps. Result using level set method combined with topological gradient of the

computed solution after 100 steps. Isovalues and the plot of topological gradient
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