Cari 2008+ 22/08/08 17:19 Page 593 $

Open Distributed Processing

Specifying OCL2.0 Constraints on Interfaces of the ODP
Applications

Oussama Reda® — Bouabid El Ouahidi* — Daniel Bourget **

* Université Mohammed-V Agdal

Faculté des Sciences, Département d’Informatique
B.P. 10 14 Rabat Maroc

ouahidi@fsr.ac.ma, redaoussama@gmail.com

** Telecom Bretagne Technopole

Département d’informatique CS 83818 29238 Brest
Daniel.Bourget@telecom-bretagne.eu

RESUME. Dans ce travail, nous analysons les concepts ODP de signatures d'interfaces de traitement
et les reégles de typages associées; le but étant de redéfinir les signatures de maniére concise et
compacte. Pour cela, nous modélisons les sighatures par des concepts UML équivalents. Ensuite,
nous spécifieons des contraintes en OCL 2.0 sur ces signatures d’interfaces de traitement ODP liées
aux regles de typages et sous-typages.

ABSTRACT. In this work, we model the ODP interaction signatures concepts in a consistent and
compact manner as well as their related type checking rules. We begin by literally analysing those
concepts in order to bring unambiguous definitions out of them, and we shall formalize those concepts
by mapping them into UML language constructs. Then we specify constraints imposed on interfaces
interaction signatures related to the computational language typing and subtyping rules. We shall
show how we can literally redefine those rules in order to steadily formalize them. After rewriting
those rules in a compact way, we make use of OCL 2.0 which provides the means to exploit those
new definitions.

MOTS-CLES : ODP, point de vue traitement, UML, OCL, Meta-modélisation, signature d'interface,
regles de typages

KEYWORDS : ODP, Computational Viewpoint, UML, OCL, Meta Modeling, Interaction Interface sig-
nature, Type Checking Rules

CARI 2008 - MAROC
-593 -

Cari 2008+ 22/08/08 17:19 Page 594 $

1. Introduction

The expansion of distributed processing field has led to the ODP standardization ini-
tiative [1] which consists of a framework by which distributed systems can be modelled
using five viewpoints. The computational viewpoint is concerned with the description of
the system as a set of objects that interact at interfaces constrained by rules, among others
typing rules. Researches in [4], [5],[6], have been particularly interested in applying UML
as a formal notation for the specification of the computational viewpoint, [7] has focused
on how to consistently present concepts of the ODP computational viewpoint and clarified
some ambiguities found while aiming to express them formally. The solutions proposed
were given on a semantic level. We have [9],[10] [11] also noted those issues, then, pro-
vided solutions and presented them on a syntactic level without the need to relegate them
on a semantic one, as well as specifying constraints related to computational interface
signatures typing and subtyping rules. However, the OCL specifications of those rules
are not easy to write, and are complicated to read and understand. This comes from the
fact that OCL 1.1 doesn’t provide any means in order to write easily comprehensible ex-
pressions. OCL 2.0 has known significant enhancements, especially with the provision of
expressions that allow the definition and reuse of variables/operations over multiple OCL
expressions. This fits well the specification of OCL constraints on typing/subtyping rules
associated to interaction signatures, since those rules are redundant and have the same
literal description pattern within their definitions. Our attempt is to model concepts of the
ODP computational viewpoint and our main focus is the formalization of the interaction
signature part as well as specification of their associated typing and subtyping rules. In
this respect we use OCL 2.0 [13] to specify clear and understandable constraints.

In Section 2, we present concepts of interaction signatures concepts provided by RM-
ODP. In Section 3, we discuss the literal definitions of those concepts ; the result of is a
consistent UML model. We discuss in section 4 how to re-define the literal definitions of
type checking rules associated to computational interfaces. In Section 5, based on those
new definitions we treat the complete specification in OCL 2.0 of type checking rules. A
conclusion and perspectives end the paper.

2. RM-ODP Interaction Signatures Concepts

An interface template is defined in RM-ODP as an interface template for a signal in-
terface, a stream interface or an operation interface. Each interface has a signature : (1)
A signal interface signature comprises a finite set of action templates, one for each signal
type in the interface. Each action template comprises the name for the signal, the number,
names and types of its parameters and an indication of causality (initiating or responding,
but not both) ; (2) An operation interface signature comprises a set of announcement and

CARI 2008 - MAROC
-594 -

Cari 2008+ 22/08/08 17:19 Page 585 $

interrogation signatures as appropriate, one for each operation type in the interface, toge-
ther with an indication of causality (client or server, but not both) for the interface. Each
announcement signature is an action template containing the name of the invocation and
the number, names and types of its parameters; (3) Each interrogation signature com-
prises an action template with the following elements : the name of the invocation; the
number, names and types of its parameters, a finite, non-empty set of action templates,
one for each possible termination type of the invocation, each containing the name of the
termination and the number, names and types of its parameters; (4) A stream interface
comprises a finite set of action templates, one for each flow type in the stream interface.
Each action template for a flow contains the name of the flow, the information type of the
flow, and an indication of causality for the flow (i.e. producer or consumer but not both).

3. Re-Definition of Interaction Signatures Concepts

When trying to formalize these concepts, we have met with the issue concerning in-
teraction signature concepts and how they are currently used and defined. In other works
such as [7] discussions have focused on whether an action template concept lays on a
syntactic level or a semantic one. Here, we do not take sight of these considerations as
the solution we propose lies on a syntactic level. We analyze how all these concepts are
linked to each others, and bring a consistent description out from their definitions.

Announcement signatures definition is clear and easy to understand when taken apart
and separately from the other definitions. However, it becomes ambiguous when we shall
join it to the definition of interrogation signatures. This is due to the fact that the in-
vocation and announcement concepts are indistinguishable. Interaction signatures other
than interrogations and announcement signatures are unambiguous. The new literal defi-
nition of interrogation signatures is as follows : Each interrogation signature comprises at
least two action templates which are an invocation and its corresponding termination. An
invocation can possibly have more than one associated termination. invocations and ter-
minations are action templates and they are statically described by their name and their
number of parameters. Each parameter is characterized by its name and its type. Based
on their definitions, announcement signatures and interrogations signatures are two dif-
ferent concepts. An announcement signature is an action template ; so, it is formalized
as shown in figure 1. Now, interrogation signatures do comprise action templates. invo-
cations and terminations are also both kind of action templates ; and, since invocations
and announcements describe the same concept from a practical point of view, it is prefe-
rable to merge them in one term. Thus, invocations are now absorbed by announcements,
and, consequently, the announcement term present both invocation and announcement
concepts (see figure 1). Interrogation signatures comprise one and only one invocation
and to each invocation there is a corresponding finite non-empty set of terminations. Ter-
minations (Parameterized Action Templates) are packed in interrogation signatures.

CARI 2008 - MAROC
-595 -

Cari 2008+ 22/08/08 17:19 Page 596 $

InterfaceSignature
causality: String

| |

0.*

FlowSignature
type: Uninterpreted
e —
L= |0
ParameterizedActionTemp
arameterizedActionTemplate ActionTemplate

parameternumbers: Integer | name: String
Parameter causality: String

name: String 0.%
type: String | >

Figure 1. Interface signatures Model

4. OCL Typing Rules Re-Definition

In this section we specify semantics of interaction signatures related to subtyping
rules. We rewrite those literal rules and present them under a new form. First, we give
the rules as they are presented in the ODP computational language, and, then provide a
clearer and compact description of them. We shall just concentrate on interrogation si-
gnatures as the other rules are already compact and easy to understand. Typing rules in
the computational language corresponding to interrogation signatures are defined as fol-
lows. Operation interface X is a signature subtype of interface Y if the conditions below
are met : (1) for every interrogation in Y, there is an interrogation signature in X which
defines an interrogation with the same name; (2) for each interrogation signature in Y,
the corresponding interrogation signature in X has the same number and names of para-
meters ; (3) for each interrogation signature in Y, every parameter type is a subtype of the
corresponding parameter type of the corresponding interrogation signature in X ; (4) the
set of termination names of an interrogation signature in Y contains the set of termination
names of the corresponding Interrogation signature in X ; (5) for each interrogation signa-
ture in Y, a given termination in the corresponding interrogation signature in X has the
same number and names of result parameters in the termination of the same name in the
interrogation signature in Y ; (6) for each interrogation signature in Y, every result type
associated with a given termination in the corresponding interrogation signature in X is

CARI 2008 - MAROC
- 596 -

Cari 2008+ 22/08/08 17:19 Page 587 $

a subtype of the result type (with the same name) in the termination with the same name
in Y ; (7) for every announcement in Y, there is an announcement signature in X which
defines an announcement with the same name ; (8) for each announcement signature in
Y, the corresponding announcement signature in X has the same number and names of
parameters ; (9) for each announcement signature in Y, every parameter type is a subtype
of the corresponding parameter type in the corresponding announcement signature in X.

The new definitions are rewritten as follows : Operation interface X is a signature
subtype of interface Y if the conditions below are met : (1) for every interrogation in
Y, there is an interrogation signature X with the same name, with the same numbers
and names of parameters and that each parameter in the interrogation signature in Y is
a subtype of the corresponding parameter in the interrogation signature in X; (2) for
every termination in an interrogation signature in Y, there is a corresponding termination
in interrogation signature X with the same name ; with the same numbers and names of
parameters and that each parameter in the termination of the interrogation signature in X
is a subtype of the interrogation signature in Y ; (3) or every announcement in Y, there is
an announcement signature X with the same name, with the same numbers and names of
parameters and that each parameter in the interrogation signature in Y is a subtype of the
corresponding parameter in the interrogation signature in X.

For signal interface types that are not defined recursively, the rules are are defined as
follows : Signal interface signature type X is a subtype of signal interface signature type
Y if the conditions below are met : (a) For every initiating signal signature in Y there
is a corresponding initiating signal signature in X with the same name, with the same
number and names of parameters, and that each parameter type in X is a subtype of the
corresponding parameter type in Y, (b) for every responding signal signature in X there
is a corresponding responding signal signature in Y with the same name, with the same
number and names of parameters, and that each parameter type in Y is a subtype of the
corresponding parameter type in X.

Now, that we have reorganised the verbal description of these rules in a compact form,
we realize they do share the same description pattern. Indeed, interaction signatures which
are related by a Type/Subtype relation must have the same names, the same names and
numbers of parameters, the latter having to satisfy a Type/Subtype relation. We can break
these rules in order to bring out OCL sub-expressions which can be used in the context
of all kinds of interaction signatures. We shall exploit these similarities between these
definitions and come up with general formal expressions which can be used to specify
OCL constraints on all interaction signatures. OCL 2.0 provides the means to realize this.

The different type checking rules related to computational interfaces contain similari-
ties in their literal definitions. That is, all interaction signatures of all computational inter-
faces which are related by a Type/Subtype relation must have the same names, the same
names and numbers of parameters and that parameters have to satisfy a Type/Subtype rela-
tion. Since all interaction signatures derive from the Parameterized Action Template term,

CARI 2008 - MAROC
-597 -

Cari 2008+ 22/08/08 17:19 Page 598 $

we explore this fact in order to specify those similarities mentioned above in the context
of the Parameterized Action Template classifier. In what follows we give the identified
OCL sub-expressions to be used in Typing/Subtyping relation specification constraints :
Context ParameterizedActionTemplate inv :

def : hasSameName(PAT : ParameterizedActionTemplate) : Boolean = self.name= PAT.name)
def : hasSameParametersNumber(PAT : ParameterizedActionTemplate) : Boolean =
(self.parameternumbers= PAT. parameternumbers)

def : hasSameParametersNames(PAT : ParameterizedActionTemplate) : Boolean =
self.Parameter — forAll(Px : Parameter | ParameterizedActionTemplate — Exists(

Py : Parameter | Px.name = PAT.Py. name))

def : isSubTypeOf (PAT : ParameterizedActionTemplate) : Boolean =

self.Parameter — forAll(Px : Parameter | ParameterizedActionTemplate — Exists(

Py : Parameter | PAT.Py.ocllsKindOf(Px)))

def : isOfCausality(c : String) : Boolean = (self.causality=c)

Context ActionTemplate inv :

def : hasSameName(AT : ActionTemplate) : Boolean = self.name= AT.name)

def : isOfCausality(c : String) : Boolean = (self.causality=c)

5. OCL Typing Rules Specification

OCL Constraints On Signal Interface Signatures The literal definition of signal
interface subtyping rules was given in the previous section.This constraint is described
using OCL as follows :

Context Signallnterfacesignature inv :

Signallnterfacesignature.alllnstances —forAll(X,Y |
ParameterizedActionTemplate.allInstances —forAll(PY |
ParameterizedActionTemplate.allInstances—exists(PX |
PX.isOfCausality(’initite’) and PY.isOfCausality(’initite’) and
Y.PY.hasSameName(X.PX) and Y.PY.hasSameParametersNumbers(X.PX) and
PY.hasSameParametersNames(X.PX) and X.PX.isSubTypeOf(Y.PY))))

and

ParameterizedActionTemplate.allInstances—forAll(PX |
ParameterizedActionTemplate.allInstances—exists(PY ||
PX.isOfCausality(’respond’) and PY.isOfCausality(’respond’) and
Y.PY.hasSameName(X.PX) and Y.PY.hasSameParametersNumbers(X.PX) and
Y.PY.hasSameParametersNames(X.PX) and Y.PY.isSubTypeOf(X.PX)))
implies X.oclIsKindOf(Y)

OCL Constraints On Operation Interface Signatures
The rules for Operation interface types that are not defined recursively were given in the

CARI 2008 - MAROC
- 598 -

Xt
ed

name)

he

Cari 2008+ 22/08/08 17:19 Page 599 $

previous section. This constraint is described using OCL as follows :

Context OperationInterfacesignature inv :

OperationInterfacesignature.alllnstances — forAll(XY |
(Interrogationsignature.alllnstances — forAll (Iy |

Interrogationsignature.alllnstances — exists(Ix |

Announcementsignaturee.alllnstances — forAll (Ay |
Announcementsignature.alllnstances — exists(Ax |

Y.Iy.Ay.hasSameName(X.Ix.Ax) and Y.ly.Ay.hasSameParametersNumbers(X.Ix.Ax)and
Y.Iy.Ay.hasSameParametersNames(X.Ix.Ax)and X.Ix.Ax.isSubTypeOf(Y.ly.Ay)))))))
and

(Interrogationsignature.alllnstances — forAll(Iy |

Interrogationsignature.alllnstances — exists(Ix |

Parameterized ActionTemplate.alllnstances — forAll (Ty |

Parameterized ActionTemplate.alllnstances — exists(Tx |
Y.Iy.Ty.hasSameName(X.Ix.Tx) and Y.ly.Ty.hasSameParametersNumbers(X.Ix.Tx) and
Y.Iy.Ty.hasSameParametersNames(X.Ix.Tx) and Y.Iy.Ty.isSubTypeOf(X.Ix.Tx))))))
and

(Announcementsignature.alllnstances — forAll(Ay |
Announcementsignature.alllnstances — exists(Ax |

Y.Iy.Ay.hasSameName(X.Ix.Ax) and Y.ly.Ay.hasSameParametersNumbers(X.Ix.Ax) and
Y.Iy.Ay.hasSameParametersNames(X.Ix.Ax) and X.Ix.Ax.isSubTypeOf(Y.ly.Ay))))
implies X.ocllsKindOf(Y)

OCL Constraints on Stream Interface Signatures
Stream signature subtyping rules are defined as follows. Stream interface X is a signature
subtype of stream interface Y if the conditions below are met for all flows which have
identical names : If the causality is producer, the information type in X is a subtype of the
information type in Y. If the causality is consumer, the information type in Y is a subtype
of the information type in X. This constraint is described using OCL as follows :
Context StreamInterfacesignature inv :
StreamInterfacesignature.alllnstances — forAll(X,Y |
(Flowsignature.alllnstances — forAll(Fxp,Fyp |
Fxp.isOfCausality(’produce’) and Fyp.isOfCausality(’produce’) and
X.Fxp.hasSameName(Y.Fyp) implies X.Fxp.type.ocllsKindOf(Y.Fyp.type)))
and (Flowsignature.alllnstances — forAll(Fxp,Fyp |
Fxp.isOfCausality(’consume’)and Fyp.isOfCausality(’consume’) and
X.Fxp.hasSameName(Y.Fyp) implies Y.Fyp.type.ocllsKindOf(X.Fxp.type))))
implies X.ocllsKindOf(Y)

CARI 2008 - MAROC
-599 -

Cari 2008+ 22/08/08 17:19 Page 600 $

6. Conclusion and Perspectives

In the present work, we specified OCL constraints associated to type checking rules
for distributed applications. In the first main part of this work, we analysed the interaction
signatures concepts. We then raised inconsistencies in their verbal description ; and finally
provided an UML model of those concepts. In the second major part of the work, we spe-
cified in OCL, semantics of interaction signatures relating to subtyping rules. We showed
that those literal rules provided by the ODP computational language can be aggregated in
a more compact definition. We then reorganized them and gave an equivalent description
in a clearer manner. Now, we have done that, our work aim to serve as a contribution
within the field of applying UML as a formal notation for the specification of the ODP
computational viewpoint, and we are investigating how to express computational interface
signatures typing rules in terms of signal signatures typing rules

7. Bibliographie

[1] ISO/IEC, « Basic Reference Model of Open Distributed Processing-Partl : Overview and
Guide to Use », ISO/IEC CD 10746-1, 1994.

[4] R. ROMREOET AL, « Modelling the ODP Computational Viewpoint with UML 2.0 », IEEE
International Enterprise Distributed Object Computing Conference, 2005.

[5] D.H.AKEHURST ET AL, « Addressing Computational Viewpoint Design », Seventh IELE
International EDOC, IEEE Computer Society, 2003.

[6] BEHZAD BORDBAR ET AL, « Using UML to specify QoS constraints in ODP », Computer
Networks Journal pp.279-304, 2002.

[7] R. ROMEROET AL, « Action templates and causalities in the ODP computational viewpoint »,
WODPEC’04 pp. 23-27,2004.

[8] J. RUMBAUGH AND AL, « OMG Document ptc/03-10-14 », Addison Wesly, 2003.

[9] O.REDA ET AL, « Interaction signatures and Action Templates in The ODP Computatinal
Viewpoint », Proc. of SEPADS 07, Greece, pp 127-131,2007.

[10] O. REDA ET AL, « Towards Refinement of The ODP Computational Viewpoint Interaction
signatures », WSEAS Transactions On Telecommunications Journal, pp 601-606, May 2007.

[11] O.REDA ET AL, « Specification of OCL Constraints on ODP Computational Interfaces »,
Proc. of Applied Applications & Communication Conf AIC 07, Greece, pp 305-311, Aout,2007.

[12] OMG, « UML2.0 Superstructure Specification », OMG document formal/05-07-04,2005.
[13] OMG, « UML 2.0 OCL Final Specification », OMG Document ptc/03-10-14,2003.

CARI 2008 - MAROC
- 600 -

