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ABSTRACT. This paper presents an iterative method based on a Self adjoint and m-Accretive
splitting for the numerical treatment of the steady state neutron transport equation in 1-D spherical
geometry. Theoretical results show the convergence of the method. The convergence of the method is
numerically illustrated and compare with the standard source iteration method on a sample problem.

RESUME. Ce papier présente une methode iterative basée sur une décomposition d'opérateur pour
le traitement numérique de |'équation du transport des neutrons en géométrie sphérique 1-D. Les
résultats de convergence théorique de la méthode sont présentés. La convergence de cette méthode
est numériquement illustrée sur un exemple et comparée a la méthode standard des sources d'itération
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1. Introduction and mathematical setting

This paper focus on developing iterative methods for the numerical treatment
of the single group steady state first order neutron transport equation in 1-D
spherical geometry verified by the neutron flux u(r, 41), solution of:

Ou 1—pu?ou _ 1 ; _ .
Pgot— %+Uu—[1N(r7u7u)U(r7u)du +q(r,p) in (0, R)x(-1,1), (1)

where the region occupied by the particles is a sphere of radius R > 0; r is the
distance from the center of the sphere; p is the cosine of the angle the particle
velocity makes with the radius; o(r) is the total cross section; k(r, p1, ') is a positive
kernel specifying the scattering of particles; g(r, 1) is a known particles source and
u(r, ) represents the angular flux to be determined for all point r € (0, R) and all
p € (—1,1). The boundary conditions prescribing the inflow of particles into the
sphere reads:

u(R, u) =0 for p € (—1,0). (2)
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We introduce a two-step iteration method linked to a Self-adjoint and m-
Accretive Splitting (SAS) of the transport operator. We investigate the con-
vergence of this iterative method. Theoretical analysis shows that this iterative
method converges unconditionally to the solution of the transport equation. An
upper bound of the contraction factor of the iteration is derived. It is dependent
on the spectrum of the Self-adjoint part of the transport operator, but is indepen-
dent of the spectrum of its m-Accretive part as well as the eigenfunctions of the
operators involved. The convergence of the method is numerically illustrated and
compare with the standard Source Iteration method on a sample problem.

Let Q =(0,R) x (—1,1). We define the space

ou 1—p?ou
W2(Q) = {u € (), p5- € L*(Q) and T“a € L?(Q)} , (3)

2
endowed with the norm [|ul|%. = [|u]*+ Hu% 4+ =t ou | where |I.]| denotes the

r Op
standard L?(Q2) norm. The functions of W?2(£2) have traces on {0} and on {R} in
L*(-1,1) [6].

Let A, ¥, K and T be the operators defined in W2(Q) by:

_ 2 1
Au= G4 T K [ s, St (@)
and
TU(T‘, H’) = Au(r, l'l/) + Eu(rv p’) - Ku(rv /’L) (5)
In the operator form, the problem (1-2) may be written as
Tu(r,p) = q(r, ). (6)
We have
D(K) = D(X) = L*(Q). (7)
It follows that
D(T) = D(A) = {u e W?(Q);u(R, 1) =0 for p < 0}. (8)

Proceeding as in [1, 2, 3|, we make the following assumptions:
(A1) o € L*((0,R)), Joo > 0 such that o(z) > og a.e. on (0, R).
(A2) k(r, pu, 1) = k(r, 1, 1) and & is positive .

1
(A3) Je € [0, 1),/ K(r, iy p)dY < agc a.e. on Q.
-1

The above assumptions guarantee the following results [1, 6, 8] .

Proposition 1.1 The operators T, K and A verify the following properties:
1) The operator T is positive definite.
2) The operators K and ¥ — K are selfadjoint and positive definite.
3) The operator A is m-accretive [6].

It then follows from Proposition 1.1(1) that the solution of problem (1)-(2) exists
and is unique in D(T'), and from Proposition 1.1(2 - 3) that the operator 7' admits
a self adjoint and m-accretive splitting.

The paper is organized as follows. In Section 2, we present the two step iterative
methods and the convergence analysis. Section 3 deals with an implementation of
the method. The discretization and the numerical results are given in Section 4.
Some concluding remarks are given in section 5.
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2. The Self-adjoint m-Accretive Splitting (SAS) Methods.

The standard splitting of the transport operator consists of a decoupling be-
tween its differential and integral parts [6]. This splitting leads to the source
iteration method defined by: given 1y € D(T), solve

Lyt = Kyp™ 4+ ¢ in Q 9
,l/}(n-f—l) c D(T) ) ( )

where L = A 4+ X. This method becomes extremely slow in the critical case.
Let us consider now another natural splitting of the transport operator stated

as follows:
-T=—(A+S5), (10)

where S = 3 — K. Therefore for any positive constant a, we have the following
two-step splitting:

T=(al+85)—(af —A)=(al+ A) — (o = S5). (11)

Since A is m-accretive and S is bounded and self-adjoint in L?(Q), it follows that
for a > 0, the operator (af + A)~! is bounded from L2?(Q) to D(T) and the
operators (ol + S)~! and al — S are bounded and self-adjoint.

For o > 0, the splitting (11) leads to the following two-step iteration method
for the solution of the problem (1-2).

Given an initial guess ¥ € D(T), for k = 0,1,... until {¥*} converges,

calculate
{ (al +8)p*+2) = (ol — A)p®) +a (12)
(al + A)p+D = (af - S)yp+d) +q
Therefore, 1(*+1) satisfies
(al + A)p*+HD = M(a)(al + A)Yp™® + N(a)q, (13)
where N(a) = 2a(al +5)~! and
M(a) = (o — S)(al + S)™ (al — A)(al + A)~. (14)
Therefore, the exact solution ¥* of equation (5) verifies
[ HD — )" < M (@)™ — " (15)

Where ||9]* = ||(al + A)¥|| ¥ € W2, Since the application |.|" is a norm in
W?2(€), the iterative method (12) converges if

[M()] < 1. (16)

Proposition 2.1 Convergence of the SAS iteration method.

Let « be a positive constant. The norm ||M(a)| of the operator M(«) is
bounded by
a—A
a+ A

B(e) = sup
A€o (S)
where o(S) is the spectrum of the operator S. Therefore it holds that | M (a)|| < 1
and the SAS iteration converges to the unique solution 1 * € D(T) of the problem
(1)-(2). The optimal parameter & which minimizes the bound B(a) is given by

‘ <1, (17)

a= >\min)\max (18)
and . .
ﬁ(@) _ VAmax = V Amin (19)

B V)\max + v )\minv

where Apin and Anax denote respectively the lower and the upper bounds of the
spectrum of the operator S.
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Proof. For o > 0, let us set U(a) = (al — A)(al + A)~! and V(a) = (ol —
S)(al+S)~t. U(a) and V(a) are bounded operators. They map L?(Q) into D(T)
and L2(Q) respectively. We have | M ()| < |U()|| |V ()|l - Since S is a bounded
self-adjoint operator in L?(Q2), we have

(=X

V(@) = ll(al = S)(al +S)~"| = sup @ty

A€o(S)

= p(e)

It holds from the positivity of the real oz and A that 8(«) < 1.

The proof of the proposition is achieved if the norm of operator U(«) verifies
lU(a)| < 1. Since A is m-accretive, (ol + A) is bijective from D(A) to L2(£2),
the operator (af + A)~! is bounded and for v € D(T), (A3,v) > 0. Moreover,
we have

(e — A)yp|* = [[(al + A)p|* = —4a( Ay, ) < 0.

Taking ¢ = (al + A)" 'y, (¢ € L%(Q)), we obtain ||U(oz)g0||2 < [lell?. Tt follows
that |U ()| < 1.

To prove (18) and (19), we consider on ¢(.S) the function t,(\) = ;"—:Li, a>0.
to is a decreasing function. It follows that |t,| gets his maximal value at Ay,

or Amax- Thus B(a) = max{ ‘;;i—m‘: g } The minimal value of («) is

obtained when [5] % = :\\"’“—";Z It then follows (18) and (19).

a—Amax

Each step of the SAS iterative method is constituted of two-half steps which
require finding solutions of linear equations with operators (ol + S) and (af +
A). Exact solutions of these equations are generally not available. These linear
equations can be solved approximately using appropriate methods with respect
to the properties of each operators. This results in the following inexact Self-
adjoint/m-Accretive splitting (ISAS) iteration for solving the linear equation (1)-
(2.

Given an initial guess (%) € D(T). For k = 0,1,2,... until {y("} converges,
solve 1/_1(’“*%) approximately from

(al + 8)Pp*+2) & (ol — A)P*) + ¢ (20)

by employing an inner iteration (e.g the conjugate gradient method) with ) ag
the initial guess, then solve 1)(*+1) approximately from

(aI + A)P*D & (ol — S)pFt3) 44 (21)

by employing an inner iteration (e.g the MINRES method), where « is a given
positive constant. The ISAS iteration method is proved to be convergent provide
that the inner iterations converge [3].

Proposition 2.2 In the case of isotropic scattering where k(r,pu, ') = o(r)e/2
(0<e<1),

1 1
B a(r)(1—c¢) +aP+ o(r)+a

1
(al +8)™ (=P P=3 [ a2

Therefore, the two-step iteration method defined by (12) can be reduced to the
following iteration: Given ¢ € D(T), for k =0,1,...

(af + A4 = B [(al — A)p® +q] +4, (23)

where B = <7"_”(1_‘:) "_") P4y aaj,

ato(l—c)  ato a+o

proof. It follows from the fact that P? = P and (af +S) = A(P +¢(I — P)) with
A=o(z)(1—c)+aand e= w
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3. An Implementation of the ISAS Method.

The ISAS iteration method can be implemented by employing a precondition-
ing technique. Let us consider the sequence {?ﬁ(k)}k:ew C D(T), computed by
the iteration (12). There exists a sequence {¢"}ren C L?(Q), uniquely deter-
mined such that for k = 0,1,2,..., ¥ = (al + A)~'¢®). Since the operator
(I + A)~" is bounded, if the sequence {p*)},cx converges to @, then {¢*)},en
will converge to ¢ = (al + A)~'@. Substituting 1*) in (12), we obtain the fol-
lowing iteration: Given an initial guess ¢(®) € L?(Q), for k = 0,1, ... until {o®}
converges, calculate

(ol + S)go(H%) = (al — A)(al + At 4 g (24)
Pt = (ol — S)p+3) 4 ¢ '

At each step k of the iteration method (24), we have to solve a linear system
Al@)F = q(a), (25)

where A(a) = (ol + S) and g(a) = (al — A)(ad + A)~'p*) + q. The solution of
equation (25) is then used to compute p*+1). An infinite dimensional adaptation
of the conjugate gradient method is employed to solve the equation (25). We have
the following algorithm for the ISAS method:

Let 9 € D(T), RO = ¢ = Ty, g(a) = (aI — A)p©® +q.

While |R™)| > € do
begin

solve A(a)F = q() by CG method;

compute @+t = (o — S)F +q ;

compute q(a) = (al — A)(al + A)~1pk+1);

compute RE+D = ¢ — (I — (aI — S)(al + A)~Hpk+D) ;
end.

In the previous algorithms, we have to make clear how the right hand side g(«)
is computed, since it contains the inverse operator (ol + A)~1. Let ¢ € L?(Q), we
have ¢ = (af — A)(al + A)"Lp = (al — A)f. where f € D(T) verifies the linear
equation

(al + A)f = (26)
Once f is calculated, ¢ can be easily computed. The differential equation (26) can
be solved numerically.

4. Discretization and numerical results

Discretization. Let Q = (0, R) x (—1,1). We consider the following triangu-
lation of €:

Q= Jri il x g ppjsa)) = JQi; 0<i<N-land —J<j<J-1,
i i
where 0 =rp < < ...<ry=Rand -1 =p_y < p_yjp1 < ...<puy=1
with p—; = —p;. We also consider the following nodes: Tipi = 9i+%7‘,‘,+1 +(1-
9i+%)7"i and Hjpd =Yjpifi+1t+ (1 *'Yj+%)lh' where 9i+% €(0,1)(0<i<N-1)
Yi+d € (0,1) and Vird = 1- V(i) (—J <j < J—1). Let Uy, denotes the
approximate value of the flux at (74, 11,). We suppose that in €;;, the approximate
flux is a polynomial of degree < 1 in r and p. Therefore, we have the following

relations:
{ Oiv1Uipr ey + (=0 1)U o1 =Upys i1
Vi+sUirsg T (0 =230)Ui41 5 = Uigs i1

Using the DSN difference scheme [6], the discrete form of the equation (26) reads:

(27)

2 2
Nir 2 (i Uigr g = iU 1) + Mg 1 (BaUsy g ja — BiUip 1 )+
Wirt 43 Uirt jrt = Vied g+t fird el » (28)
0<i<N-li—J<j<J-1
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Iterations at fixed c = 0.98 CPU time at fixed ¢ — 0.98

ferafons
fine 5

o &
sigma

Figure 1: Comparison of the SI and SAS methods at fixed ¢ = 0.98 (¢ = 107°):
(left) number of iterations; (right) CPU time.
where ;1 = Wi tpjid, Aipd = Wi dTigds Viglojrg = Wj+§wi+§7’i2+% and

i =T = 2wy, T - = 3wi+%ri2+%
Bi+1pj+r — Bipy = w1 (1 - 3#§+%)7 Biv1— B = “2py 10501, (29)
Wip1 = pje1 — pj, By =0

The system (28) is completed with the linear system obtained from discretization
of the equation (26) at i = —1 and the symmetry condition at r = 0. The resulting

system is solved explicitly to obtain U, ;. 1 U,

it3,g and Uiy jyg-

Numerical results. We present numerical results from the application of the
ISAS method on an example problem. We took particular data for which an exact
solution u is known: o(r) = o, k(r, u, 1) = F,(0<c<1),R=1

a(r,p) =o(l—c)(1—r) —p;  u(r,p)=1-r

and we compared the speed (number of iteration and CPU time) of ISAS and

standard SI algorithms at fixed ¢ and at fixed o. For iterative methods tested

|U—U®]|,
. . . HU”2 . . .

prescribed €. For this problem, the theoretical value of the SAS iteration optimal

parameter is a; = o(1 — ¢). For the ISAS iteration, we set & = o. The spatial
mesh size is h = 1/500 and the angular mesh size is 7 = 1/10.

The Figure 1 represents as function of o (1 < ¢ < 100) the number of iteration
and the CPU time at ¢ = 0.98 corresponding the SI and ISAS algorithm for
e = 1E — 05. The Figure 2 represents as function of ¢ (0 < ¢ < 1) the number of
iteration and the CPU time at o = 100 corresponding the SI and ISAS algorithm
for ¢ = 1E — 05. The Figure 3 represents as function of o (for large o) the
number of iteration and the CPU time at ¢ = 0.98 corresponding the SI and ISAS
algorithm for ¢ = 1F — 05. The Figure 4 represents as function of ¢ (¢ ~ 1)
the number of iteration and the CPU time at ¢ = 50 corresponding the SI and
ISAS algorithm for ¢ = 5F — 04. The Figure 5 represents the convergence rate
as function of the number of iteration at ¢ = 0.5 (o € {10,100,500}) and at
c=1 (o € {10,50,100}). It appears from these tests that the ISAS algorithm is
efficient compare to SI algorithm.

here, the iterations are stopped when the relative error is less than a
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Figure 2: Comparison of the SI and SAS methods at fixed o = 100 (e = 107%):

(left) number of iterations; (right) CPU time.
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Figure 3: Comparison of the SI and SAS methods at fixed ¢ = 0.98, for large o
(e =1075): (left) number of iterations; (right) CPU time.
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Figure 4: Comparison of the SI and SAS methods at fixed o = 50, for ¢ ~ 1
(e =5E — 04): (left) number of iterations; (right) CPU time.
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Convergence rate for ¢ — 0.5
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Convergence rate for ¢ = 1
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Figure 5: Comparison of the convergence rate at fixed ¢ of the SI and SAS for
several values of o : (left) ¢ = 0.5; (right) ¢ = 1.

5. Conclusion

Throughout this work, it comes that the iterative methods based on a Self-
adjoint and m-Accretive splitting presented for solving the transport equation in
1D-spherical geometry, converge unconditionally. The theoretical proof of the
convergence of the method is independent of the discretization. The previous
numerical results show that the SAS iteration is efficient compare to the standard
Source Iteration. The method is easy to implemented as SI method.
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