Cari 2008+ 22/08/08 17:16 Page 389 $

Symbiotic Neuroevolution for Evolution of Neural
Network’s Architecture

Alireza rezaee

lecturer of Islamic azad university buin Zahra branch
Phd student of electrical engineering of Amirkabir university of technology
Tehran, Iran

arrezaee@aut.ac.ir

RESUME. Alireza rezaee — received the B.Sc degrees in control engineering from Sharif University of
Technology,lran in 2002, and M.Sc degree in electrical engineering from Amirkabir University of
Technology,Iran , he is PhD candidate in electrical engineering in amirkabir University of Technology. His
main research interests include Dynamic Bayesian network, robotic, navigation,multi agent.

ABSTRACT. In this paper an extension of SANE that simultaneously evolves the weights and

architecture of an MLP neural network is presented. The symbiotic adaptive neuroevolution (SANE)
system coevolves a population of neurons that cooperate to form a functioning neural network.
Evolutionary Strategies (ES) is applied to evolve the network weights. In order to increase the evolving
system performance and achieving global optimum convergence the concept of age is introduced in
calculating the fitness. The current investigation focuses on evolving neurocontrollers for a nonlinear
unstable system (cart-pole problem). The results indicate the suitability for using SANE to evolve weights
and architecture of a neurocontroller.

KEYWORDS: Index Terms — SANE, Coevolution, neural network, neurocontroller.

1. Introduction

Neural Networks are commonly used in many applications, due to their intrinsic
characteristics, including: capability to capture nonlinear relationships between input and
output, celebrated robustness and graceful degradation, etc. Choosing a particular neural
network for an application concerns two considerations: first, the neural network
architecture, and second, its learning algorithm. Conventional learning algorithms have
drawbacks such as: local minima trapping, saturation, initial weight dependence, and over

CARI 2008 - MAROC
- 389 -

Cari 2008+ 22/08/08 17:16 Page 390 $

fitting. Besides, gradient-based algorithms can not be applied in many problems because it
does need the error in network outputs as a supervisory signal. In these domains, such
information is unavailable or computationally costly to obtain. Moreover, most neural
learning methods, being based on gradient descent, cannot search the nondifferentiable
landscape of multilayer network’s architectures.

the number of weights augments very rapidly with the number of hidden units.

The main advantage of evolved neural networks, as compared with traditional ones, is
their ability to learn in spaces where no gradient information is available [4]. This is the
case for the landscape of architectures. Some degree of architectural encoding will not only
scale better than direct codifications, but will address the search for suitable architectures.
This second means of evolution is called the indirect coding scheme, which, in its extreme
form, could be defined as the evolutionary approach where only architectural parameters
and not weights are coded into chromosomes. For example, connection matrices coding
feedforward single hidden layer networks trained by backpropagation have been used
successfully [10]. It is important to notice that here backpropagation is not substituted by
another algorithm, but combined with it. Many other such combinations have been tried.
For example, GAs have also been used for weight initialization. Backpropagation is used
later for fine-tuning the initial weights [2].

The indirect coding scheme gets in trouble when assigning fitness to chromosomes
since network performance is highly dependent on the initial weight configuration [11, 12].
Much care has to be taken to avoid this noise. The answer may be in schemes between the
two extremes (direct and indirect) described above. Yao et al suggested EPNet to solve this
problem [3]. The idea behind EPNet is to put more emphasis on evolving ANN behaviors,
rather than just its circuitry. Its emphasis is on maintaining behavioral links between a
parent and its offspring.

It might even be beneficial not to converge to a best individual, as happens in some
control problems where maintaining adaptability is crucial. For example, SANE [1]
coevolves a neuron-based population that cooperates to form a neural network. In the FLN
[8], on the contrary, gives up hidden units from the very beginning. The computational
burden moves from the hidden layer to the input layer. The GA task consists in finding the
right subset of polynomial input attributes that leads to an effective separation of the given
pattern classes.

Taking into account that, in many problems, the goal is to learn a nonlinear mapping, a
feed-forward multi-layer architecture seems to be suitable, most approaches to the genetic
design of neural architectures search the space of one-hidden-layer networks. Evolutionary
techniques have proved to search efficiently this kind of huge, nondifferentiable, noisy,
deceptive, and full of local minima spaces that defeat more conventional search techniques

CARI 2008 - MAROC
-390 -

Cari 2008+ 22/08/08 17:16 Page 391 $

This article demonstrates the advantages of cooperative, coevolutionary algorithms
used in SANE [1]-symbiotic adaptive neuroevolution system- in evolving neural
network’s weights and architecture simultaneously. This paper is organized as follows. In
the next section definition of symbiosis and extension of the SANE approach in evolving
architecture is presented. Section three discusses cart-pole balancing problem. Finally
section four draws conclusion.

2. symbiotic adaptive neuroevolution

2.1. Symbiosis

As a definition, Symbiosis is a close ecological relationship between the individuals of
two (or more) different species. Sometimes a symbiotic relationship benefits both species
(Mutualism), in other cases one of them is unaffected or harmed (Commensalism or
Parasitism respectively) or both of them are unaffected (Neutralism). In symbiotic adaptive
neuroevolution (SANE), symbiotic is defined as a type of coevolution where individuals
explicitly cooperate with each other and rely on the presence of other individuals for
survival. Hence, the relationship between individuals (neurons) is Mutualism.

2.2. SANE

In almost all approaches to neuroevolution, each individual in the population
represents a complete neural network that is evaluated independently of other networks in
the population. By treating each member as a separate, full solution, the EA focuses the
search toward a single dominant individual. Such concentration can greatly impede search
progress in both complex and dynamic tasks. In contrast, the symbiotic coevolutionary
approach method restricts the scope of each individual to a single neuron. More
specifically, each individual represents a hidden neuron in a two-layer neural network. In
SANE, complete neural networks are built by combining several neurons. Since no single
neuron can perform the whole task alone, the neurons must optimize one aspect of the
neural network and connect with other neurons that optimize other aspects. Evolutionary
pressures therefore exist to evolve several different types or specializations of neurons. In
this way, the neurons will form a symbiotic relationship. It follows that the evolution
performed in SANE can be characterized as symbiotic evolution. Symbiotic evolution is
defined as a type of coevolution where individuals explicitly cooperate with each other and
rely on the presence of other individuals for survival.

CARI 2008 - MAROC
-391 -

Cari 2008+ 22/08/08 17:16 Page 392 $

The advantages of symbiotic evolution are twofold. First, the neuron specializations
ensure diversity, which discourages convergence of the population. A single neuron cannot
“take over” a population, since to achieve high fitness values; there must be other
specializations present. If a specialization

Input Hidden Output
Layer Layer Layer

|m1| |w,-R Wos| bo

bi | Wo1

—_\\)
Input Weights Output Weights
and biase and biase

|1/o| |1/0|1/0| 1/o| |1/o| 1/0|

Input and output connections

Figure 1. General structure of one hidden layer perceptron neural network. Each neuron in the hidden unit
is coded by two vectors. The upper vector represents the weights and the lower one connections.

becomes too prevalent, its members will not always be combined with other
specializations in the population. Thus, redundant partial solutions do not always receive
the benefit of other specializations and will incur lower fitness evaluations. Evolutionary
pressures are therefore present to select against members of dominant specializations. This
is quite different from standard evolutionary approaches, which always converge the
population, hopefully at the global optimum, but often at a local one. In symbiotic
evolution, solutions are found in diverse, unconverged populations. By maintaining
diverse populations, SANE can continue to use its recombination operators to build
effective neural structures.

CARI 2008 - MAROC
-392 -

Cari 2008+ 22/08/08 17:16 Page 393 $

Two populations are evolved through SANE, Blueprints and neurons. Blueprints
population represents the network chromosomes and neurons populations contain all
members that, in combination with each other, build blueprint individuals. Symbiotic
evolution is distinct from most coevolutionary methods, where individuals compete
rather than cooperate to survive.

Evolution at the neuron level more accurately evaluates the genetic building blocks.
We evolve each neuron by two ways, evolving weights and evolving connections.
Evolving connections is done through mutation and recombination. In this phase
neurons are recombined with many different neurons in the population, which produces
a more accurate evaluation of the neural network building blocks. Weights are

updated by evolutionary strategy (described in subsection C). Fig.l shows the
general structure of a one-hidden-layer perceptron neural network. Two vectors assigned
to each neuron, one of them represents weight values and the other one shows whether a
connection exists or not. Fig.2 shows the main steps in evolution of one generation in
SANE. In Standard SANE, no evolutionary pressure exists to build minimal structure.
An Extension of this method is developed in order to make a minimal network. As
mentioned above each individual in blueprints population represents a neural network
by a network, in which each field corresponds to a neuron that cooperates in building
that network. In order to evolve structure rather than only neurons’ weights, another
vector is assigned to neurons that demonstrate the probability of existence of each
connection in the next generation. We called this auxiliary vector. This vector is evolved
in each generation by means of evolutionary strategy. In each generation, a vector with
random variables with uniform distribution between O and 1 for each neuron is
produced. Having compared this vector with auxiliary vector, connection exist in each
neuron will be assigned.

2.3. Evolutionary Strategies

Evolutionary Strategies (ES) are population-based search algorithms developed by
Rechenberg and Schwefel [5].ES exploit a population of p individuals to probe the
search space. At each iteration of the algorithm, A offspring are produced by stochastic
variation, called mutation, of recombinations of a set of individuals (called the parents)
from the current population. Mutation is typically carried out by adding a realization of
a normally distributed random vector. After the creation of the offspring individuals, a
selection phase takes place, where either the p best individuals among the offspring
population, or the p best individuals among both the parent and the offspring
populations are selected to form the population of the next generation. These two
selection schemes are denoted as (1, A)-ES and (p+ A)-ES, respectively. ES use a set of
parameters, called strategy parameters, to parameterize the normal distribution used in

CARI 2008 - MAROC
-393 -

Cari 2008+ 22/08/08 17:16 Page 394 $

inalizatnon

Create m Network
Blueprints

[Create n Neurons 1

1l

Evaluate each Evaluate Neurons’
network Fitness Fitness

Evolution

Blueprints Evolution

Neurons Evolution

Select top a% of the
blueprint parents

Create) neuron
offspring by the

mutation operator and
ll n offspring by ES

Ul

Evaluate offspring by

Select two random
individuals and do one
point crossover

means of the parent
JVL blueprints
<
Evaluate blueprint L
offspring =
Replace b% of the A
l/L worst neuron parents
by the best neuron
Replace b% of the | offspring

worst performing
blueprint parents by the
best offspring

Figure 2. Main steps in evolution of one generation in SANE. Two populations are evolved in
iteration: blueprints in which networks are coded and neurons.

the mutation procedure. These parameters can either be fixed, or evolve during the
evolution process resulting in self-adaptive ES. Clearly, the parameters of the normal
distribution play an important role in the performance of the ES algorithm. Evolutionary
strategy described below is applied to evolve neuron weights ([6], [7], [9]).

1. Each individual is a pair of real-valued vectors (n and w). The w is neuron weights
and biases vector and 1 corresponds to the adaptable standard deviations.

2. Create an offspring for each individual: Use the mutation operator which is
defined below:

P (Dexp{zNOD +2V (0D}
WA =), () + 0 (DN, (0.

n is the length of n and w vectors and p is the number of individuals. N(0,1) denotes
a realization of a normally distributed one-dimensional random variable with
mean zero and standard deviation one. Nj(0,1) indicates that the random variable is
sampled a new for each value of the counter j. A realization of a normally
distributed one-dimensional random variable having mean zero and standard deviation t

CARI 2008 - MAROC
-394 -

o

Cari 2008+ 22/08/08 17:16 Page 385 $

is given by TN(0,1). The_facfors ™ are robust exogenous parameters, which have
been commonly set to 2/n and V2 respectively.

3. Determine the fitness of every individual, including all parents and offspring.
Each neuron’s fitness is the mean of five best networks’ fitness in which neuron
cooperated (calculating network fitness is described in detail in subsection D).

2.4 Fitness

fitness function plays a key role in how efficiently and accurately the problem is
solved. An improper fitness function may cause the system to completely malfunction,
for example, if we use only "l/error” as fitness function in a manipulator control
problem the evolutionary algorithm tends to make neural network just to make steady
state error low and leave transition response which is crucial in many problems . In fact,
with improper fitness function the neural network does not learn the rules governing the
system. There is another problem in this evolving system. Algorithm starts with simple
structure. The more complex structures exist in the population if the simpler networks
can not make a good fitness. However a simple structure with evolved connection and
weights may perform better than a complex structure which has not access to the correct
weights during the evolution process yet. This problem leads to remain simple structures
in the population and make the system to converge a suboptimal solution. To solve this
problem the concept of age is introduced. Age of networks is involved in calculating
each blueprint’s fitness. Thus, more complex structures which are appropriate to find the
optimal problem can exist. More discuss on how efficiently choose the fitness function
is involved in next section for a real world problem. The fitness of a network blueprint is
determined as follows

f = oot * oy * Bl

where the terms are the complexity, performance, and the age of the blueprint
respectively. Parameter o can be tuned in order to find a compromise between the
complexity of the architecture and its corresponding performance. Any a<<l value will
guarantee that performance will never be sacrificed for architectural simplicity.
Parameter § shows how the age of the blueprint affects the overall fitness and is problem
dependent. For a one-hidden layer perceptron complexity fitness can be determined as

follows
j;omp = Jrcomp,min + Nconnec + (R + S)N

-f;'amp,min = (R + S)Nneuron,min

neuron

3

CARI 2008 - MAROC
-395 -

Cari 2008+ 22/08/08 17:16 Page 396 $

where the terms are minimum complexity assumed to be capable of solving the
problem, the number of all connections in the network, and the number of neurons
multiplied by the total of inputs and outputs.

Three terms in Eq.2 can be normalized before adding together represents the final
fitness value.

3. CART-POLE PROBLEM

Balancing pole is a benchmark of nonlinear unstable systems. The task is to
balance the system such that the pole does not fall beyond a predefined vertical angle
(20 degrees) and cart remains within the bounds of the horizontal track (0.5 meters).

In this problem, the neural network produces output control signal which is the
applied horizontal force to cart. Another alternative is to use a network which produces
PID gains for a controller rather than producing the control signal itself.

As mentioned in preceding section designing appropriate fitness function for a
specific problem play a vital role in determining how accurate and efficient the system
work. The fitness function is chosen to be the time system can hold the pole beyond a
predefined vertical angle and cart within the bounds of the horizontal track. At the first
glance this fitness function may seem too simple to guide the evolutionary programming
to find the desired solution. However evaluating networks with random initial condition
(i.e. randomly choose cart and pole position and velocity), and then calculating fitness
function as described causes evolutionary process to find the solution. More precisely,
choosing random initial condition prevents networks which just learn specific function
(for a particular initial condition) and not general rule governing the system from
gaining high fitness.

The equations of motions for cart-pole problem are simulated. A one-hidden layer
perceptron neural network is fed with the four states, cart and pole position and velocity.
Fig.3 shows the fitness evaluation over the generation. Fig.4 depicts the performance of
the system in balancing pole with random initial condition.

4. conclusion

This article demonstrates the advantages of cooperative, coevolutionary algorithms
used in SANE-symbiotic adaptive neuroevolution system- in evolving neural network’s
weights and architecture simultaneously. The SANE system incorporates a
coevolutionary search strategy called symbiotic evolution to form neural networks in

CARI 2008 - MAROC
- 396 -

Cari 2008+ 22/08/08 17:16 Page 397 $

difficult decision tasks. This specialization is the heart of SANE’s search efficiency. By
reducing the solution space for each individual, SANE searches in parallel
decompositions of the complete neural network space while maintaining high levels of
diversity. To solve the problem of remaining simple structure in the population and
allowing more complex structure entering the blueprint population the concept of age is
introduced.

Controlling nonlinear unstable systems with neural networks often poses a difficult
problem. While the proper behavior of the system may be describable, there may not be
any training cases to provide for a supervised learning procedure. This paper suggests
SANE approach that can simultaneously adjust both the weights and the architecture of
a network. This provides a method for designing a network of sufficient size.

REFERENCES

{1] D. E. Moriarty and R. Miikkulainen, “Forming neural networks through efficient and adaptive
coevolution,” Evol. Comput., vol. 5, no. 4, pp. 373-399, 1998.

[2] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, pp.1423-1447, Sept. 1999.

[3] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural networks,” IEEE Trans.
Neural Networks, vol. 8, pp. 694-713, 1997.

[4] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,” Biolog. Cybern., vol. 63, pp.
487493, 1990.

[5] H.-P. Schwefel, Evolution and Optimum Seeking. New York: Wiley, 1995.

[6] graph generation system,” Complex Syst., vol. 4, no. 4, pp. 461-476, 1990,

[7] S. A Harp, T. Samad, and A. Guha, “Toward the genetic synthesis of neural networks,” in Proc. 3rd Int.
Conf. Genetic Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 360-369.

[8] A. Sierra, J. A. Macias, and F. Corbacho,” Evolution of Functional Link Networks” IEEE Trans. EC,
vol. 5, no. 1, Feb 2001

[9] H.Talavati.Far, Krazi, M.B.Menhaj,” A Self-tuning Controller for TeleoperationSystem using
Evolutionary Learning Algorithms in Neural Networks”, unpublished. 2005.

[10] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks using genetic algorithms,”
in Proc. 3rd Int. Conf. Genetic Algorithms Appl., 1989, pp. 379-384.

[11] H. Kitano, “Designing neural networks using genetic algorithms with

[12] graph generation system,” Complex Syst., vol. 4, no. 4, pp. 461-476, 1990.

[13] S. A. Harp, T. Samad, and A. Guha, “Toward the genetic synthesis of neural networks,” in Proc.

3rd Int. Conf. Genetic Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 360-369.

CARI 2008 - MAROC
-397 -

Cari 2008+ 22/08/08 17:16 Page 398 $

4000

3000

2000

Fitness

1000

0 10 20 30
generation

Figure 3. Fitness over generation

pole(rad) & cart{m—)

0 5 10
time(Sec)

pole(rad) & cart(m-)

0 5 10 15
time(Sec)

Figure 4. pole and Cart position and velocities

CARI 2008 - MAROC
- 398 -

