Cari 2008+ 22/08/08 17:21 ©Page 703 $

Model Refactorings as Logic-Based
Fine-Grain Transformations

Emmad Saadeh* — Derrick G Kourie —Andrew Boake

Department of Computer Science,
University of Pretoria,
Lynwood Road, Pretoria, SOUTH AFRICA

emmad_saadeh@aauj.edu, dkourie@cs.up.ac.za, Andrew.Boake@absa.co.za

RESUME. Le Refactoring est un processus permettant d'améliorer la structure interne d'un system
logiciel tout en conservant ses caractéristiques et comportements externes. La tendance actuelle
est d'appliquer le refactoring aux niveaux d'abstractions supérieures a celle de la codification
(programmation). Dans cet article, nous proposons les transformations "fine-grain" qui représentent
une nouvelle approche pour définir et exécuter les refactorings d'un model. L'approche est basée
sur un ensemble prédéfinit des transformations "fine-grain" (FGTs) qui supporte I'évolution de
model, et s'appui sur la logique de représentation du model UML de base. La méthode présente
plusieurs avantages au dela des approches précédentes, et garantit 'homogénéité entre les
différents diagrammes UML.

ABSTRACT. Refactoring is the process of improving the internal structure of a software system
while preserving its external behavior. The current trend is to apply refactoring at levels of
abstraction higher than the code level. In this paper, we propose a new approach to define and
execute model refactorings as fine-grained transformations. It is based on predefined set of fine-
grain transformations (FGTs) that support model evolution, and relies on logic-based representation
of the underlying UML model. The approach has many advantages over the preceding ones and
guarantees consistency between the different UML diagrams.

MOTS-CLES: transformation fine-grain, dépendance séquentielle, processus de tassement

KEYWORDS: fine-grain transformation, sequential dependency, compaction process

CARI 2008 - MAROC
-703 -

Cari 2008+ 22/08/08 17:21 ©Page 704 $

1. Introduction

In [1, 2], Roberts defines refactorings as program transformations containing
particular preconditions that must be verified before the transformation can be applied.
Base on this definition, the different model refactoring approaches look at refactoring as
a model transformation with pre and post conditions that the model must satisfy in order
to apply the refactoring.

Refactoring

Figure 1. Refactoring as black box

In the refactoring literature, there are two main approaches to represent refactorings.
The first one is based on graph theory and uses graph-matching mechanisms for
refactoring [3, 4]. The second one is based on a conditional transformation mechanism:
before being applied, transformations are guarded by preconditions that need to be
satisfied [5, 6]. In both of the approaches, refactoring is a black box that, if applicable,
will translate the model from one state to another. There is no concern of the detailed
steps internally require during the refactoring. Such a dealing with refactorings (as
black box) causes many problems and shortcomings in refactoring tools:

1. Sequential dependencies are found between refactorings as a whole and not
between the components of refactorings; this reduces the potential for parallelism
when applying the refactorings (keeping in mind the special dealing with
composite refactorings).

2. Where conflicts occur between two refactorings, it is difficult to know which part
of the two refactorings caused the conflicts. This will make the process of resolving
the conflicts more difficult.

3. The pre and post conditions of refactoring sometimes do not give the exact idea
about what the refactoring did. As a simple example, suppose that refactoring X has
as preconditions : (Object A found, Object B not found) and as postconditions (Object 4 not
found, Object B found). Here X could be one of two possible refactorings: X is
(RenameObject(4, B, type)); or X is (DeleteObject(4, type), AddObject(B, type)).

4. A “Compaction” process that is used to remove redundancy between the
refactorings does not work when dealing with refactoring as a black box.

5. Each refactoring inside the refactoring tool is implemented, tested and saved, to be
used by the end users. Such a procedure has to be repeated for every new
refactoring. This is difficult because the list of possible refactorings is unbounded;
every day a new refactoring is proposed.

6. It is difficult for the end user to build new refactorings because there is a need to
write a code.

In order to address problems such as these, our refactoring approach uses a different
paradigm; we called it FGT-Based approach. We predefine a set of fine-grain
transformations (FGTs) that will be the basis for the construction of any refactoring.

CARI 2008 - MAROC
-704 -

o

Cari 2008+ 22/08/08 17:21 ©Page 705 $

The set is sufficiently complete to generate any modification on the model. As a result,
it is easy and straightforward to control the effects, find the dependencies, detect and
resolve the conflicts, remove the redundancies between the different FGTs and give the
end user the possibility to build his own refactoring with out a need to write any code.

The remainder of the paper will be structured as follows. Section 2 presents the
logic-based underlying representation of the UML model. Section 3 defines the concept
of using fine-grain transformation to construct model transformations. Related work is
discussed in Section 4. Section 5 concludes this paper.

2. Logic-Based underlying representation of the model

Our approach relies on representing all relevant elements in a UML model as logic
terms called Model Element Terms (METs). Each MET expresses the semantics of
standard UML [7] modeling vocabulary related to Objects and Relations. These METs
are represented as Prolog facts so as to benefit from Prolog’s powerful search engine
and backtracking techniques. The algorithm produces two kinds of METs as shown in
Table (1).

Category METs Description

PackageMET (PackagelD, PackageName, [ClassIDs]) ﬁ){gﬁ;slﬁsfgée:ﬁetgagfagzt of IDs of class

ClassMET (ClassiD, PackagelD, ClassName, Modifier PackagelD refers to the package where the
[MethodlDs), [AttributeIDs]) class located
ReturnType refers to the return type of the
- Y method.
§ E MethodMET (MethodID, ClassID, MethodName, ReturnType, Num, Num>1 return type is array
S s Modifier, [ParamIDs]) Num=1 return type is primitive type or class
object

Num=(0__ return type is void

AttributeMET (AutributelD, ClassID, AttributeName, AttributeType,
Num , Modifier)

ParameterMET (ParamID, MethodID, ParamName, ParamType,
Num)

Represent the relation between two objects in
the model (FromID and TolD).LinkType can
be: generalization, association, call, update,
access and definition type.

LinkMET (LinkID, label, FromID, ToID, LinkType')

Link
METs

Table 1. Underlying set of Model Element Terms (METs)

In order to simplify the presentation of our approach, we restrict ourselves to the
simplified UML meta-model shown in Figure (2). Thus, we do not consider here
interfaces, abstract classes, abstract methods, aggregations and so on.

| Package I'%
ooz,

-hamespace o.* -ownedElement

1
0.1 ModelElement
name: Name

]

Parameter
Kind :
ParameterDirectionKind

N
Relationship
AN

. — Class I

Association

type

Feature type
typeFeature

StructuralFeature kJ— InstanceVariable |

-behaviorFeature

BehavioralFeature le

0.1

Method

Figure 2: Simplified UML Meta-Model

CARI 2008 - MAROC

- 705 -

o

Cari 2008+ 22/08/08 17:21 ©Page 706 $

3. Fine-Grained Transformations

The main idea of our approach is to define a set of fine-grain transformations
(FGTs) which will be the basis for the construction of any model transformations. A
FGT is derived from the general actions that can be performed on an element of a UML
model. We then build a refactoring using a sequence of these low-level “atomic”
operations, rather than a piece of dummy code.

The set of FGTs to be used in our approach are shown in Table (2). In addition, our
approach also assumes a list of auxiliary functions and constructs (such as GETTYPE(),
GETMODE(), CONCATENATE(), IF statement, LOOP, etc). These are not transformation
operations and are not included in the R-DAGs or in the compaction process, as we will
explain later.

FGTs Operations Description

. . , . Add class/method/attribute/, ter object t
AddObject (objectname, type, num, modifier, objecttype) the mcozlisl methodattribute/parameter object to
RenameObject (oldobjectname, objecttype, newobjectname) Rename class/method/attribute/parameter object

Change object access mode
(public/private/protected)

Change object type definition
(class,int,float,long, String, ...)

DeleteObject (objectname, object type) Delete class/method/attribute/parameter object

ChangeObjectAccessMode (objectname, oldmode, newmode)

ChangeObjectDefType(objectname, oldtype, newtype)

Add gen/assoc/call/update/access/type link to

AddLink(name, fromobject, ftype, toobject ,totype, Itype) the model

RenameLink(oldname, fromobject,ftype, toobject ,ttype,
Itype,newname)
DeleteLink(name, fromobject ftype, toobject ,ttype, ltype) Delete gen/assoc/call/update/access/type link

Table 2. Proposed set of predefined Fine-Grain Transformations (FGTs)

Rename gen/assoc/call/update/access/type link

Building a refactoring as a set of FGTs has great advantages over approaches that
deal with refactorings as a black box:

1. End users are able build their own refactoring by using a sequence of FGTs. There
is no need to write any code: the user merely selects the operations needed to
construct a refactoring. The built refactoring will be given a name, list of input
parameters, and can be saved in the refactoring tool for a later use. Figure (3)
below shows how to build a refactoring called CreateClass that is used to insert an
empty class between some superclass and a list of n subclasses.

CreateClass (class, modifier, superclass, sublist [subl, sub2, .., subn])

1. AddObject (class, null, nuil, modifier, "class”)
2. AddLink ("isa”, superclass,”class”, class, "class”, "generalization”)
3. Loop { DeleteLink (-, -, sublist[i],”class”,”generalization”)
AddLink ("isa", class,”class”, sublist[i],”class”, "generalization”) }

Figure 3. CreateClass Refactoring

As another example, Figure (4) shows how to build a refactoring called
EncapsulateAttribute that is used to encapsulate an atrribute inside a class.

CARI 2008 - MAROC
- 706 -

o

Cari 2008+ 22/08/08 17:21 ©Page 707 $

EncapsulateAttribute (ClassName, AttName) ‘

1. String SET= CONCATENATE ("set", AttName)
2. String GET= CONCATENATE ("ger", AttName)
3. AttType= GETTYPE (ClassName.AttName)

4. AtNum=GETNUM(ClassName.AttName)

Support Operations

AddObject (ClassName.SET, void, 0, public, "method”)

. AddObject(ClassName.SET.P, AtType, AttNum, null, "parameter")
AddObject(ClassName.GET, AttType, AttNum,public,"method")

. AddLink (-, ClassName.SET, "method”, ClassName.AttName, "attribute”, "update")
. AddLink (-, ClassName.GET, "method", ClassName.AttName, "attribute”, "read")

RIS]

10. RedirectDestinationLink(ClassName.AttName, "attribute”, "update”, Loop {)
. " o m DeleteLink (---,ClassName.AttName, "attribute”, "update")
ClassName SET, "Method", "call) N
AddLink (---,ClassName.SET, "Method", "call")}

Loop{

11. RedirectDestinationLink(ClassName. AttName, "attribute”, "read",) i i .
ClassNameGET, "method”, "call") DeleteLink (--,- ClassName AttName, "attribute", "read")

AddLink (-,-,-,('lassName.GEI "method", ”cn[l")}

12. ChangeObjectAccessMode (ClassName.AttName,public, private)

Figure 4. EncapsulateAttribute Refactoring

Giving the end user the ability to construct their own refactorings is a powerful
feature of our approach because, as we mentioned before, the list of possible
refactorings is infinite; and no tool vendor can support the end users with all their
needs.

The approach manages sequential dependencies and conflicts at the level of FGTs
rather than at the level of the whole refactoring. This has a great benefit in finding
the optimal order, detecting and resolving conflicts, removing redundant operations
between refactorings and merging two different sequences of refactorings.
Although a detailed discussion of these algorithms is beyond the scope of this
paper, relying on the semantics of FGTs, we have catalogued the various
possibilities for sequential dependencies as in Figure (5) and conflicts as in Figure
(6) between FGTs. Our approach provides a mechanism to resolve (automatically
or interactively) all these type of conflicts.

3.
3
AddObject DeleteObject

3 1 29 30 31

22
.

i — ==
a 17. 35 34
4 41 40
enmeoriea o
2 6 18
ChangeObject ChangeObject
o DefType AccessMode 28

“.
, "» e 4
AddLink \ Delete]

21

Figure 5. Possible sequential dependencies between FGTs.

CARI 2008 - MAROC

- 707 -

o

Cari 2008+ 22/08/08 17:21 ©Page 708 $

2

AddObject

ki

26

10,11

20
13
1
i ddLink 27 DeleteLink

28 CExtends
12 ’

Figure 6. Possible conflicts between FGTs.

3.

The FGT approach increases the opportunities for parallelising FGTs in one or
more refactorings. It involves inserting sequentially dependent FGTs into the same
data structure, called Refactoring Dependency Acyclic Graph (R-DAG) while
maintaining a mapping of the original refactoring (primitive or composite) to which
each FGT relates. FGTs of a refactoring (especially the composite ones) may be
inserted in more than one R-DAG. However, since FGTs in different R-DAGS are
guaranteed to be independent of one another, the R-DAGs can be applied
concurrently on a model.

The approach can also remove redundancies between a sequence of FGTs. The
final effect of the operations on the model after the compaction process is the same
as the effect of the operations without any compaction. In general, the compaction
process increases the efficiency of the refactoring algorithm by reducing the
number of FGTs that need to be applied on the model. Mens [8] talks about the
basis of the compaction process. He considered as future work the task of
increasing the efficiency of his algorithm and dealing with composite refactorings.
In our work, we have developed a new algorithm that increases the compaction
process efficiency and deals with the problem of composite refactorings. Although
a detailed discussion of our compaction algorithm is beyond the scope of this
paper, it should be clear that it involves, inter alia, the systematic application of
information in figures 5 and 6 to produce R-DAGs, which are then reduced in
relation to certain FGT-based rules.

CARI 2008 - MAROC

- 708 -

Cari 2008+ 22/08/08 17:21 ©Page 709 $

4. Related Works

The current research trend is to apply refactoring at levels of abstraction higher than
the code level. Suny e et al [9] have provided a fundamental paradigm for model
refactoring to improve the design of object-oriented applications. They use OCL pre
and post conditions. In [10], Porres implemented refactorings as a collection of
transformation rules. In [11] Mens represented refactorings as graph transformations
and used AGG as an experimental tool. In [12, 13] Kniesel uses CT-based refactorings
and use Condor as an experimental tool.

Our approach of using a predefined set of FGTs to represent the refactorings is
closely related to the work on Reuse Contracts [14]. In [8, 15], Mens provides a
formalism for Reuse Contracts to express graph transformations.

5. Conclusion

The main contribution of this paper is to define and execute model refactorings as a
set of FGTs. Sequential dependencies, conflicts and compaction opportunities between
each pair of FGTs are specified. The approach relies on an R-DAG as a data structure to
store the set of FGTs in one refactoring in a way that reflects the sequential
dependencies between these FGTs. It relies on logic-based representations of the
underlying UML model. The approach enjoys several advantages over the previous
ones, as summarized in Table (3).

No. | Alternative approaches Our approach
L Refactoring is a black box Refactoring is a set of FGTs that is inserted in one or
more R-DAGs
2 Sequential dependencies are founded between Sequential dependencies are founded between
) refactorings as a whole components (FGTs) of refactorings
Itis difficult to l.mow Wh.ICh part of refactoring Conlflicts are detected at the level of FGTs. The approach
3. causes the conflict and difficult to resolve these . . R .
. resolves these conflicts automatically or interactively
conflicts
5. Less parallelizing opportunities More parallelizing opportunities
6 Difficult for end users to build new refactoring that Easy and straightforward by using the list of FGTs and
) is not predefine before in the refactoring tool the supported operations
7. No ability to remove the redundant operations Remove the redundant FGTs inside refactoring

Table 3. 4 comparison between our refactoring approach and the other alternative ones

All the above features result in an approach that is efficient, saves time and effort at
when refactoring. As future work we plan to extend our simplified UML meta-model to
deal with new constructs such as interfaces, aggregations, constructors, method
overloadings and so on. We expect that new dependencies and conflicts between the
different FGTSs will be introduced, and ways will have to be found deal with these.

CARI 2008 - MAROC
- 709 -

Cari 2008+ 22/08/08 17:21 ©Page 710 $

6. Bibliographie

[1] DB Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois
at Urbana-Champaign, 1999.

[2] DB Roberts, J Brant, and RE Johnson. A refactoring tool for smalltalk. Theory and
Practice of Object Systems 3, pages 253-263, 1997.

[3] T. Mens, “On the use of graph transformations for model refactoring,” in
Generative and transformational techniques in software engineering (J. V. Ralf
L mmel, Joao Saraivaed.), pp. 67-98, Departamento di Informatica, Universidade
do Minho, 2005.

[4] T. Mens, P. Van Gorp, D. Varr , and G. Karsai, “Applying a model transformation
taxonomy to graph transformation technology,” in Proc. Int’l Workshop on Graph
and Model Transformation (GraMoT 2005), September 2005.

[5] G Kniesel. A logic foundation for conditional program transformations. Technical
report no I41-TR-2006-01, ISSN 0944-8535, CS Dept 111, 2006.

[6] G Kniesel and H Koch. Static composition of refactorings. Science of Computer
Programming, 52:9-51, 2004.

[7] Object Management Group, “Unified Modeling Language: Infrastructure version
2.0.” formal/2005-07-05, August 2005.

[8] T Mens. 4 formal foundation for object-oriented software evolution. PhD thesis,
Vrije Universiteit Brussel, 1999.

[9] G Sunye, D Pollet, Y L Traon, and J-M Jezequel. Refactoring uml models.

Proceedings of UML 2001 Conference, pages 138-148, 2001.

[10] I Porres. Model refactorings as rule-based update transformations. Proceedings of
UML 2003 Conference, pages 159-174, 2003.

[11] G Taentzer. A graph transformation environment for modeling and validation of
software., Proc AGTIVE 2003, 3062:446-453, 2004,

[12] G Kniesel and U Bardey. Static dependency analysis for conditional program
transformations. Technical report no I141-TR-03, 2003.

[13] U Bardey. Abhangigkeitsanalyse fur Programm-Transformationenur Programm
Transformationen. PhD thesis, University of Bonn, 2003.

[14] P Steyaert, C Lucas, T Mens, and T DiHondt. Reuse contracts: Managing the
evolution of reusable assets. Proc OOPSLA 96, pages 268-286, 1996.

[15] T Mens. Conditional graph rewriting as a domain independent formalism for
software evolution. Proc IntAgtive 99 Conference, LNCS 1779, pages 127-
143,2000.

[16] S Demeyer, F V Rysselberghe, T Girba, J Ratzinger, R Marinescu, T Mens, B D
Bois, D Janssens, S Ducasse, M Lanza, M Riegerand H Gall, and M El-Ramly.
The lan-simulation: A refactoring teaching example. IWPSE(S5, pages 123-134,
2005.

CARI 2008 - MAROC
- 710 -

