Cari 2008+ 22/08/08 17:13 Page 299 $

A Dynamic Load Balancing Strategy for Parallel Association
Rule Mining in Grid Computing

TLILI Raja SLIMANI Yahya
Department of Computer Science Department of Computer Science
Faculty of Sciences of Tunisia Faculty of Sciences of Tunisia
Campus universitaire, 1060 Tunis Campus universitaire, 1060 Tunis
Tunisie Tunisie

Raja_tlili@yahoo.fr yahya.slimani@fst.rnu.tn

RESUME. La parallélisation des algorithmes d’extraction des regles associatives est une approche qui vise
a améliorer leurs performances, permettant le passage a I'échelle et la réduction des temps de calcul.
Cependant, la parallélisation de ces algorithmes n’est pas triviale et fait face a plusieurs défis, notamment
celui de I'équilibrage de charge.

L’objectif de cet article et de proposer une stratégie dynamique d’équilibrage de charge pour I'exécution
d’algorithmes d’extraction des regles associatives (basés sur I'algorithme Apriori) dans des grilles de calcul.
Le but de cette stratégie est de palier au probléeme de I'hétérogénéité de ces architectures et a I'aspect
dynamique de ces algorithmes.

ABSTRACT. Parallelisation approach is a good technique to enhance the performance of sequential data
mining algorithms. However, parallelizing these algorithms is not a trivial task and is facing many challenges
including the workload balancing problem.

The goal of this paper is to propose a dynamic load balancing strategy for parallel association rule mining
algorithms in the context of a Grid computing environment. The main objective of this strategy is to reduce
the exponential complexity of sequential data mining algorithms based on Apriori algorithm.

MOTS-CLES : Régles associatives, Grilles de calcul, Equilibrage dynamique de charge, Algorithme Apriori.
KEYWORDS: Association rules, Grid computing, Dynamic load balancing, Apriori algorithm.

CARI 2008 - MAROC
-299 -

Cari 2008+ 22/08/08 17:13 Page 300 $

1. Introduction

The demand for high performance computing continues to increase everyday. The
computational need of a wide range of scientific and commercial applications cannot be met even
by the fastest computers available [6]. Grid computing is recently regarded as one of the most
promising platform for data and computation-intensive applications like data mining. A Grid can
be envisioned as a collection of geographically dispersed computing and storage resources
interconnected with high speed networks and effectively utilized in order to achieve
performances not ordinarily attainable on a single computational resource [1]. In such computing
environments heterogeneity is inevitable due to their distributed nature.

The Association rules mining technique which trends to find interesting correlation
relationships between items in a large database of sales transactions has become one of the most
important data mining techniques and has attracted a great deal of attention in the information
industry in recent years. Although algorithms of this technique have a simple statement, they are
computationally and input/output intensive. So, implementing these algorithms under a Grid
environment seems to be interesting. Almost all current parallel algorithms assume the
homogeneity and thus use static load balancing strategies. These strategies are essentially based
on initially partitioning the transactional database and no further interfering is done during
execution time to correct the load imbalance caused by the dynamic nature of the algorithms of
this technique and also by the heterogeneity of such distributed systems. Thus applying them to
Grid systems will degrade their performance due to the load imbalance between resources that
appear during execution time. Because of that we have to develop methodologies to handle this
problem, which is the focus of our research.

In this paper, we propose a run time load balancing strategy for association rules mining
algorithms under a Grid computing environment. The rest of the paper is organized as follows.
Section 2 introduces parallel association rule mining. Section 3 describes the load balancing
problem. Section 4 presents the system model of a Grid, and proposes a dynamic load balancing
strategy. Experimental results obtained from implementing this strategy are shown in section 5.
Finally, the paper concludes with section 6.

2. Parallel association rule mining

2.1. Association rule

Association rules mining (ARM) finds interesting correlation relationships among a large set
of data items. A typical example of this technique is market basket analysis. This process
analyses customer buying habits by finding associations between different items that customers
place in their “shopping baskets”. Such information may be used to plan marketing or advertising
strategies, as well as catalog design [2]. Each basket represents a different transaction in the
transactional database, associated to this transaction the items bought by a customer. An example
of an association rule over such a database could be that “80% of the customers that bought bread
and milk also bought eggs”.

CARI 2008 - MAROC
- 300 -

Cari 2008+ 22/08/08 17:15 Page 301 $

Given a transactional database D, an association rule has the form X=>Y, where X and Y are
two itemsets, and XNY=&J. The rule’s support is the joint probability of a transaction containing
both X and Y at the same time, and is given as ¢(X U ¥). The confidence of the rule is the
conditional probability that a transaction contains ¥ given that it contains X and is given as
o(XUY)/o(X). A rule is frequent if its support is greater than or equal to a pre-determined
minimum support and strong if the confidence is more than or equal to a user specified minimum
confidence. Association rules mining is a two-step process: (1) The first step consists of finding
all frequent itemsets that occur at least as frequently as the fixed minimum support; (2) The
second step consists of generating strong implication rules from these frequent itemsets.

The overall performance of mining association rules is determined by the first step which is
known as the frequent set counting problem [2].

2.2. Parallel association rules mining algorithms

Association rules mining algorithms suffer from a high computational complexity which
derives from the size of its search space and the high demands of data access. Parallelism is
expected to relieve these algorithms from the sequential bottleneck, providing the ability to scale
the massive datasets, and improving the response time. However, parallelizing these algorithms is
not trivial and is facing many challenges including the workload balancing problem.

Many parallel algorithms for solving the frequent set counting problem have been proposed.
Most of them use Apriori algorithm [6] as fundamental algorithm, because of its success on the
sequential setting. The reader could refer to the survey of Zaki on association rules mining
algorithms and relative parallelization schemas [4]. Agrawal et al. proposed a broad taxonomy of
parallelization strategies that can be adopted for Apriori in [6].

3. Load balancing: problem description

3.1. General framework for load balancing

Load balancing is the assignment of work to processors [3]. A typical distributed system will
have a number of processors working independently with each other. Each processor possesses
an initial load, which represents an amount of work to be performed, and each may have a
different processing capacity (i.e., different architecture, operating system, CPU speed, memory
size and available disk space). To minimize the time needed to perform all tasks, the workload
has to be evenly distributed over all processors based on their capacities. If all communication
links are of infinite bandwidth, the load distribution would suffer from no delay, but this does not
represent real distributed environments. Therefore, load balancing is also a decision making
process of whether to allow loads migration or not. In addition to that, the load on each processor
as well as on the network can vary from time to time based on the workload brought about by
users. With all these factors taken into account, load balancing can be generalized into four basic
steps: (1) Monitoring processor load and state; (2) Exchanging workload and state information
between processors; (3) Calculating the new workload distribution; and (4) Actual data
movement [3].

CARI 2008 - MAROC
- 301 -

Cari 2008+ 22/08/08 17:16 Page 302 $

In applications with constant workloads, static load balancing can be used as a pre-processor
to the computation. Other applications, such as data mining, have workloads that are
unpredictable and change during the computation. Hence, this kind of applications requires
dynamic load balancers that adjust the decomposition as the computation proceeds.

Parallel association rule mining algorithms have a dynamic nature because of their
dependency on the degree of correlation between itemsets in the transactional database.
Basically, current algorithms assume the homogeneity and stability of the whole system, and new
methodologies are needed to handle the previously mentioned issues.

3.2 Load balancing in Grid computing

Grid computing is recently regarded as one of the most promising platforms for data-intensive
applications like data mining. In such systems heterogeneity is inevitable. Although intensive
works have been done in load balancing, the different nature of a Grid computing environment
from the traditional distributed system, prevents existing load balancing schemes from benefiting
large-scale applications. An excellent survey from Y. Li and others [8], displays the existing
solutions and the new efforts in load balancing that aim to address the new challenges in Grid.
The work done so far to cope with one or more challenges brought by Grid: heterogeneity,
resource sharing, high latency and dynamic system state, can be identified by three categories as
mentioned in [8]: (1) Repartition methods focus on calculating data distribution in a
heterogeneous way, but don’t pay much attention to the data movement in Grid; (2) Divisible
load theory based schemes well model both the computation and communication, but loose
validity in case of adaptive application; (3) Prediction based schemes need further investigation
in case of long-term applications.

4. Proposed system model

4.1 Load balancing model

In our study we model a data Grid as a collection of # sites with different computational
facilities and storage subsystem. Let G = (S}, S, S,) denotes a set of sites, where each site is
defined as a vector with four parameters S;= (NN;, CN;, Mem;, Band;), where NN, is the number
of computational nodes, CN; is the coordinator node of S;, Mem; is the memory size and Band; is
the bandwidth size of the network. Figure 1 shows the Grid system model. The proposed load
balancing model is centralized intra-site, but distributed inter-sites. Each site in the Grid has a
workload manager, called the coordinator, which accommodates submitted transactional database
partitions and the list of candidates of the previous iteration of the association rules mining
algorithm. The coordinator aims at tracking the global workload status by periodically
exchanging a “state vector” with other coordinators in the system. Depending on the workload
state of each site, the coordinator may calculate the frequency of candidate itemsets locally or
transfer them to other sites. If the coordinator cannot fix the workload imbalance locally, the set
of candidates will be sent to a remote site through the network. This site is chosen according to
two features: (1) the global vector of workloads containing the workload information of each site;

CARI 2008 - MAROC
-302 -

Cari 2008+ 22/08/08 17:16 Page 303 $

(2) the nearest site available to receive this workload (i.e. least communication cost). Before
performing any candidates migration between sites, or transactions migration between nodes
within the same site, the coordinator makes use of the following two equations to choose the
appropriate migration plan:

EET;;> 2%(CCN,; + EET,) (1)
EET,;> 3%(CCS,, + EET,,))

where EET;; is the estimated required time for node N;; of the site S; to complete the processing
of remaining transactions data, EET;; is the estimated required time to process these transactions
in another node N;; of the same site S; in the case of equation (1), EET,, is the estimated
required time to process these transactions in another node N, , of a remote site S, in the case of
equation (2), CCN,;; is the communication cost between nodes ;; and N;; of the site S; and
CCS;, is the communication cost between sites S; and S, In other words, the coordinator
guaranties, by the use of previously mentioned equations, if transactions or candidates migration
will improve the performance of the Grid. The processing time at a local node must dominate the
processing time at a remote node added to it the time spent in communication and transactions
(or candidates) movements. Otherwise, it will be better to process these transactions locally.

Our model is fault-tolerant. It takes into consideration the probability of failure of a
coordinator node. If the coordinator node does not give response in a fixed period of time, an
election policy is invoked to choose another coordinator.

Site 1 Coordinators Site 2

(D

Node Ny, i

Figure 1. The system model of a Grid
4.2 Load balancing strategy

Our proposed load balancing strategy depends on three issues: (1) Database architecture
(partitioned or not); (2) Candidate itemsets tree (duplicated or partitioned); (3) network
communication parameter (bandwidth). Apriori algorithm for finding frequent itemsets [8] is the
kernel for most data mining parallel algorithms. That is why we have chosen to address our
strategy to Apriori-based algorithms [6]. This class of algorithms has an iterative nature (an
itemset of length K is derived by scanning the transactional database K times), with a complete
and bottom-up search. Our strategy balances the workload in two levels: the first level before
execution, the second level during execution (at run time).

1. Before execution: As displayed in figure 2, the transactional database is partitioned over all
Grid sites (clusters), where the size of each partition is determined according to the site

CARI 2008 - MAROC
-303 -

Cari 2008+ 22/08/08 17:16 Page 304 $

Si
— -
OO-~-OU

Figure 2. Database partitioning between different sites

processing capacity (i.e., different architecture, operating system, CPU speed, memory size
and available disk space).

2. During execution: A hybrid approach between candidates duplication and candidates
partitioning is used. The candidate itemsets are partitioned all over the sites of the Grid, but
they are duplicated within each site nodes. This approach is chosen for the following reason:
when the minimum support threshold is low the candidate itemsets overflow the memory
space and incur a lot of disk I/O. So, partitioning the candidate itemsets over all sites, allows
us to fully utilize the memory space and reduce disks I/O. At iteration k, the candidate
itemsets are partitioned into equivalence classes based on their common (k-2) length
prefixes. A detailed explanation of candidate itemsets clustering could be found in [5]. From
the Grid level, the coordinators of different sites periodically exchange their global state
information. From the intra-site level, the coordinator updates its global workload vector by
acquiring workload information from each node in its local site. Using these information,
each coordinator calculates its workload. In the case of imbalance, it proceeds to the
following steps.

(i) The coordinator makes a plan for transactions migration intra-site (within the same
cluster) using equation (1). If the imbalance still present, it also creates another plan for
candidate migration inter-sites (between clusters of the Grid). The overhead of network
transfer caused by transaction migration is larger then the overhead incurred by candidate
migration. That is why we chose to reallocate transactions inside the cluster, and
candidates between different clusters.

(ii) The coordinator sends migration plan to all processing nodes and instructs them to
reallocate the workload.

For each site S;, the coordinator will execute the algorithm displayed in figure 3. Where: GL; =
global vector of workloads of the nodes N;; in the Site S;; L;; = local workload of the node &;; of
the site S; ; Limit;; = a pre-fixed threshold of the workload of the node N;; of the site S; ; CCN;
= communication cost between nodes N;; and N;; of the site S;; EET;; = estimated required time
for node N;; of the site S; to complete the processing of remaining transactions; CCS;, =
communication cost between sites S; and S, ; V= vector of the state of all the other coordinators
in the Grid. The state of each site coordinator is stored in the vector with these informations: /d-
site, CCS;; and L;. This vector is sorted by CCS;; and L.

CARI 2008 - MAROC
-304 -

Cari 2008+ 22/08/08 17:16 Page 305 $

Start
For N;;in S; do
/I Update the global vector of workload of each site
Update GL,(L;)
If (L;;> Limit;;) Then //An overload detection
If Exists (V;xin S;) Such that (L, < Limit;; and EET;;> 2*(CCN;,;;+ EET;))
Then

Migration intra-site(V;;,

N;) // Load balancing intra-Site
Else // Load balancing inter-Site
/I the migration inter-site is more expensive (in time) than the migration intra-site.
Search in V;
exists (N, , in S,) where (EET;;> 3*(CCS; , + EET, ,)) Then
Migration inter-site(S; ,S,) // Workload balancing inter-Site
End If

End If
End If

End For

Figure 3. The run time work load balancing strategy

5. Performance evaluation

We evaluated the performance of the load balancing strategy proposed in section 4 by using
the GridSim toolkit proposed by Buyya and Murshed [9]. By the help of the previously
mentioned simulator, we can specify the desired Grid configuration: number of sites, number of
nodes in each site, their characteristics, time period for sending the state vector, network
bandwidth, etc. In order to do our tests, we implemented a parallel version of the sequential
Apriori and we added to it our work load balancing strategy. The program code of the parallel
version was first implemented, tested and ameliorated on an IBM SP2 distributed memory
machine of 8 clusters before running it under the GridSim toolkit environment. We conducted
many experimentations (with different Grid configurations and with different datasets). Due to
pages limitation, we will present in what follows only the results obtained by using fours sites,
each site containing eight nodes. The dataset used in tests is synthetic. The database size is 100
MB, it contains 1300000 transactions and 4000 items, and the average size of each transaction is
25. Figure 4 displays the execution time obtained from running the parallel version of Apriori
without the work load balancing strategy and the time obtained when the strategy is embedded in
the parallel implementation. We can clearly see that the parallel execution time with work load

CARI 2008 - MAROC
- 305 -

Cari 2008+ 22/08/08 17:16 Page 306 $

balancing outperforms the time needed for the parallel execution without taking care to the load
imbalance that may occur during the execution of the association rule mining algorithm.
DataSet1

‘ - - -A- - - without loadbalancing —&—— with Ioadbalancing‘

600

450

300 -

150

Run time (sec)

0.5% 1% 15% 2% 25% 3%
min support (%)

Figure 4: Run time with and without load balancing for different support values

Our work load balancing strategy has reduced the execution time of about 30%.

6. Conclusion

In this article we developed a dynamic load balancing strategy for association rule mining
algorithms under a Grid environment. The first experimentations of our strategy have showed
that we reduce the execution time of association rule algorithms and we obtain a good
distribution of the workload among processors of a Grid. In the future, we plan to experiment our
strategy on dense and sparse databases in order to study the effect of the database type on our
strategy.

7. References

[1] 1. Foster and C. Kesselman, The Grid2: Blue print for a New Computing Infrastructure. Morgan
Kaufmann, 2003.

[2] J. Han and M.. Kamber. Data Mining : concepts and techniques. Maurgan Kaufman Publishers, 2000.

[3] K. Devine, E. Boman, R. Heaphy and B. Hendrickson, New Challenges in Dynamic Load Balancing.
Appl. Num. Maths, Vol.52, issues 2-3, 133-152, 2005.

[4] M. J. Zaki. Parallel and distributed association mining: a survey. IEEE, Concurrency, 7(4): pp14-25,
1999.

[5] M. J. Zaki, S. Parthasarathy, M. Ogihara and W. Li. New Algorithms for Fast Discovery of Association
Rules. University of Rochester, Technical Report 651, July 1997.

[6] R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEE Transactions on Knowledge and
Data Engineering , 8:962-969, 1996.

[7] R. Buyya and M. Murshed. GridSim: a toolkit for the modelling and simulation of distributed resource
management and scheduling for Grid computing. Concurrency Computat.: Pract. Exper., 2002.

[8] Y. Li and Z. Lan, A Survey of Load Balancing in Grid Computing. Computational and information
Science, First International Symposium, CIS 2004, Shanghai, China, 2004.

CARI 2008 - MAROC
- 306 -

