Cari 2008+ 22/08/08 17:20 Page 631 $

Distributed Load Balancing Model for Grid Computing

Belabbas Yagoubi * — Meddeber Meriem **

* & 5

University of Oran
Department of Computer Science,Oran, Algeria
byagoubi@yahoo.fr

k3% . .

University of Mascara
Department of Computer Science,Mascara, Algeria
m.meddeber@yahoo.fr

ABSTRACT. Most existing load balancing strategies were developed, assuming homogeneous set of resources linked
with homogeneous and fast networks. However, these assumptions are not realistic in Grid computing because their
specific characteristics like heterogeneity, scalability and dynamicity. Hence, load balancing problem represents a new
challenge for these new environments where many research projects are under way.

Our contributions in this paper are two folds. First we propose a distributed load balancing model transforming any Grid
topology into a forest structure. Second we develop, over this model, a two level load balancing that reduces the average
response time of tasks and their transferring cost. The proposed strategy is fully distributed with local decision making
avoiding, if possible, the use of wide area network.

RESUME. La plupart des stratégies d’équilibrage de charge existantes se sont intéressées a des systémes distrioués
supposés avoir des ressources homogénes interconnectées a l'aide de réseaux homogenes et a hauts débits. Pour
les Grilles de calcul, ces hypothéses ne sont pas réalistes a cause des caractéristiques d’hétérogénéité, de passage a
I'échelle et de dynamicité. Ainsi, pour ces environnements, le probléme d’équilibrage de charge constitue un nouveau défi
pour lequel plusieurs recherches sont actuellement investies.

Notre contribution dans cette perspective a travers ce papier est double: premiérement, nous proposons un modele
distribué d’équilibrage de charge, permettant de représenter n’importe quelle topologie de grille en une structure de forét.
Nous développons ensuite sur ce modéle, une stratégie d’équilibrage a deux niveaux ayant comme principaux objectifs
la réduction du temps de réponse moyen et le colt de transfert de taches. La stratégie proposée est de nature distribuée
avec une prise de décision locale, ce qui permettra a chaque fois que c’est possible d’éviter le recours au réseau de
communication & large échelle.

KEYWORDS : Load balancing,Grid computing, Distributed model, Transferring cost, Workload.
MOTS-CLES : Equilibrage de charge,Grilles de calcul, Modéle distribué, Colt de transfert, Charge de travail.

CARI 2008 - MAROC
- 631 -

Cari 2008+ 22/08/08 17:20 Page 632 $

1. Introduction

Recent researches on computing architectures are allowed the emergence of a new computing paradigm

known as Grid computing. Grid is a type of distributed system which supports the sharing and coordinated
use of resources, independently from their physical type and location, in dynamic virtual organizations
that share the same goal [5]. This technology allows the use of geographically widely distributed and
multi-owner resources to solve large-scale applications like meteorological simulations,data intensive ap-
plications, research of DNA sequences, etc. [3].
In order to fulfill the user expectations in terms of performance and efficiency, the Grid system needs ef-
ficient load balancing algorithms for the distribution of tasks. The main goal is to prevent, if possible, the
condition where some processors are overloaded with a set of tasks while others are lightly loaded or even
idle[10].

The essential objective of a load balancing can be, depending on the user or the system administrator,
defined by:

— The aim for the user is to minimize the makespan of its own application, regardless the performance
of other applications in the system.

— The main goal for administrator is to maximize the mean tasks deadline by ensuring maximal utiliza-
tion of available resources.
Typically, a load balancing scheme consists of four policies:

) The information policy is responsible to define when and how the information on the Grid resources avail-
ability is updated.

) The location policy determines a suitable transfer partner (server or receiver) once the transference policy
decided that this resource is server or receiver.

) The selection policy defines the task that should be transferred from the busiest resource to the idlest.

) The transference policy classifies a resource as server or receiver according to its availability status.
Although load balancing problem in conventional parallel and distributed systems has been intensively
studied, new challenges in Grid computing still make it an interesting topic, and many research projects
are under way. Load balancing algorithms in classical parallel and distributed systems, which usually run
on homogeneous and dedicated resources, cannot work well in the Grid architectures [1]. Grids has a lot
of specific characteristics, like heferogeneity, autonomy, dynamicity and scalability, which make the load
balancing problem more difficult.

Our main contributions in this paper are two folds. First we propose a distributed load balancing model
transforming, univocally, any Grid topology into a forest structure. Second we develop a two level strategy
to load balance tasks among resources of computational Grid.

Our strategy privileges local load balancing than global ones in order to achieve two main objectives:
(1) The reduction of the average response time of tasks; and,
(i1) The reduction of the communication cost induced by task transferring.

The rest of this paper is organized as follows: Some related works are described in Section 2. The
mapping of any Grid architecture into a forest is explained in Section 3. Section 4 describes the main
steps of the proposed load balancing strategy. In Section 5, we present and discuss the performance of our
strategy through some experimental results. Finally, Section 6 concludes the paper and providing a preview
of future research.

CARI 2008 - MAROC
-632-

Cari 2008+ 22/08/08 17:20 Page 633 $

2. Related works

Most load balancing approaches are oriented on application partitioning via graph algorithms [8]. How-
ever, it does not address the issue of reducing migration cost, that is, the cost entailed by load redistribution,
which can consume order of magnitude more time than the actual computation of a new decomposition.
Some works [9] have proposed a latency - tolerant algorithm that takes advantage of overlapping the com-
putation of internal data and the communication of incoming data to reduce data migration cost. Unfortu-
nately, it requires applications to provide such a parallelism between data processing and migration, which
restricts its applicability. Genaud et al. [6] enhance the MPI Scatterv primitive to support master-slave
load balancing by taking into consideration the optimization of computation and data distribution using a
linear programming algorithm. However, this solution is limited to static load balancing. In [7], Hu et al.
propose an optimal data migration algorithm in diffusive dynamic load balancing through the calculation
of Lagrange multiplier of the Euclidean form of transferred weight. This work can effectively minimize the
data movement in homogenous environments, but it does not consider the network heterogeneity.

As mentioned above, a large number of load balancing techniques and heuristics presented in the litera-
ture, target only homogeneous resources. However, modern computing systems, such as the computational
Grid, are most likely to be widely distributed and strongly heterogeneous. Therefore, it is essential to
consider the impact of these characteristics on the design of load balancing techniques.

The traditional objective, when balancing sets of computational tasks, is to minimize the overall exe-
cution time called makespan. However, in the context of heterogeneous distributed platforms, makespan
minimization problems are in most cases NP-complete, sometimes even APX-complete [10]. In addition,
when dealing with large scale systems, an absolute minimization of the total execution time is not the only
objective of a load balancing strategy. The communication cost, induced by load redistribution, is also a
critical issue. For this purpose, yagoubi proposed in [11], a hierarchical load balancing model as a new
framework to balance computing load in a Grid. Unfortunately, the root of the proposed model can become
a bottleneck.

We propose, in this paper, a novel load balancing strategy to address the new challenges in Grid com-
puting. Comparatively to the existing works, the main characteristics of our strategy are:

(1) It is a fully distributed strategy, witch allows to solve bottleneck of the model proposed in[11];
(ii) It uses a task-level load balancing; and, (iii) It privileges local tasks transfer than global ones, in order
to reduce communication costs induced by the migration of tasks.

3. Mapping a Grid into a forest-based model

From the topological point of view, we regard a Grid as a set of clusters in a multi-nodes platform. Each
cluster owns a set of worker nodes and belongs to a local domain (LAN). Every cluster is connected to the
global network (WAN). As illustrated by Figure 1 The load balancing algorithm proposed in this paper is
based on mapping model of any Grid topology into a forest structure. Each cluster is modeled by a two
levels tree: The root represents the cluster manager and the leaves are associated to the worker nodes.

Level 0: Each cluster manager of this level is associated to a physical cluster of the Grid.
In our load balancing strategy, this manager is responsible to:

— Maintain the workload information relating to each one of its worker nodes;

— Estimate the workload of associated cluster and diffuse this information to other cluster managers;
— Decide to start a local load balancing, which we will call intra-cluster load balancing;

— Send the load balancing decisions to the worker nodes which it manages, for execution;

— Initiate a global load balancing, which we will call inter-clusters load balancing.

CARI 2008 - MAROC
-633 -

Cari 2008+ 22/08/08 17:20 Page 634 $

Cluster managers

bal Load Balancing'— Level O

Worker Nodes

Locals Load Balancing

Figure 1. Two level representation model of a Grid
Level 1: At this level, we find the worker nodes of a Grid linked to their respective clusters. Each node at

this level is responsible to:
— Maintain its workload information;
— Send this information to its cluster manager;

— Perform the load balancing decided by its cluster manager.

4. Load Balancing Strategy

In accordance with the structure of the proposed model, we distinguish between two load balancing
levels: Intra-cluster load balancing (Inter-worker nodes) and Inter-clusters (Intra-Grid) load balancing.

4.1. Intra-cluster load balancing

Depending on its current load, each cluster manager decides to start a load balancing operation.
In this case, the cluster manager tries in priority, to load balance its workload among its worker nodes. At
this level, communication costs are not taken into account in the task transfer since the worker nodes of the
same cluster are interconnected by a LAN network, of which communication cost is constant.
To implement this local load balancing, we propose the following three steps strategy:
Step 1: Estimation of the current cluster workload
Each cluster manager estimates its associated cluster capability by performing the following actions:
(1) Estimates current workload of the cluster based on workload information received from its nodes;
(ii) Computes the standard deviation over the workload index ! in order to measure the deviation between
its involved nodes;
(iii) Sends workload information to the other cluster managers.
Step 2: Decision making
In this step the cluster manager decides whether it is necessary to perform a balancing operation or not. For
this purpose it executes the two following actions:

1. To consider the heterogeneity between worker nodes capabilities, we propose to take as workload index the processing
time denoted (TEX). We define the processing time of an entity (node or cluster) as ratio between its workload (LOD) and

i ili . LOD
its capability (SPD): TEX = 555

CARI 2008 - MAROC
-634 -

Cari 2008+ 22/08/08 17:20 Page 635 $

1. Defining the imbalance/saturation state of cluster. If we consider that the standard deviation ¢ mea-
sures the average deviation between the processing times of worker nodes and the processing time of their
cluster, we can say that this cluster is in balance state when o is small. Then, we define the balance and
saturation states as follows:

Balance state: We define a balance threshold ¢, from which we can say that the o tends to zero and hence
the group is balanced: If (¢ < £) Then the cluster is balanced Else It is imbalanced.

Saturation state: A cluster can be balanced while being saturated. In this particular case, it is not useful
to start an intra cluster load balancing since its nodes will remain overloaded. To measure saturation, we
introduce another threshold called saturation threshold, denoted as §.

2. Cluster partitioning. For an imbalance case, we determine the overloaded nodes and the under loaded
ones, depending on processing time of every node relatively to their associated cluster.
Step 3: Tasks transferring.
To transfer tasks from overloaded nodes to under loaded ones, we propose the following heuristic:
a- Evaluate the total amount of load "Supply", available on receiver nodes;
b- Compute the total amount of load "Demand", required by source nodes;
c- If the supply is much lower than the demand, it is not recommended to start local load balancing. We
introduce a third threshold, called expectation threshold denoted as p , to measure relative deviation between
supply and demand. We can then write If (Supply/Demand > p) Then perform Local load balancing Else
perform Global load balancing;
d- Performs tasks transfer according to selection criteria 2.

For the sake of the paper length we give in the following only the inter-clusters load balancing algorithm.
A similar intra-cluster load balancing algorithm can be found in [11].

4.2. Inter-clusters load balancing

The load balancing at this level is used if a cluster manager fails to balance their workload among
their associated nodes. If we have such case, each overloaded cluster manager transfer tasks from its
overloaded worker nodes to under loaded clusters. Contrary to the intra-cluster level, we should consider
the communication cost between clusters. Knowing the global state of each cluster, the overloaded cluster
manager can distribute its overload tasks between under loaded clusters. The chosen under loaded clusters
are those than need minimal communication cost for transferring tasks from overloaded clusters. A task can
be transferred only if the sum of its latency in the source cluster and cost transfer is lower than its latency
on the receiver cluster. This assumption will avoid making useless task migration.

Inter-clusters load balancing algorithm

1. For Each cluster manager of cluster G; AND according to its specific period do
a- Computes speed SPD; , capacity SAT; and processing time TE X; of G;.
b - Sends its current workload information to all other cluster managers.

end For
2. Let GES , GER and GEN are respectively overloaded, under loaded and balanced cluster sets.

GES «— ®;GER +— ®; GEN «— ®
3. Sort items of GES by descending order of their processing times.

2. As criterion selection we propose to transfer in first the task with longest remaining processing time.

CARI 2008 - MAROC
- 635 -

Cari 2008+ 22/08/08 17:20 Page 6356 $

4. For Every cluster G; of set GES do

(i) Sort the clusters G, of GER by ascending order of inter clusters (G;-G») WAN bandwidth
sizes.
(ii) Sort the nodes of G; by descending order of their processing times.
(iii) While ((GES # ® And GER # ®)) do
For i=1 To # (GER) do
(a) Sort tasks of first node of G by selection criterion and communication cost,
(b) Transfer the higher priority task from first node of G; to it cluster of GER,
(c) Update the current workloads of source and receiver clusters,
(d) Update sets GES, GER and GEN,
(e) If (GES = ® OR GER = ®) then Return end If
(f) Sort GES by descending order of their processing times.
end For

done

end For

5. Experimental study

In order to evaluate the performance of the strategy we have implemented our algorithms on the GridSim
simulator [2], which we extended to support simulation of varying Grid load balancing problems.

The experiments were performed, based on the variation of several performance parameters in a Grid,
namely the number of clusters, their worker nodes and the number of tasks.

We focused on the following objectives: Average waiting time, Average execution time and Average re-
sponse time.

To evaluate the benefit realized, we compute the above metrics before (denoted Bef) and after (A ft) ex-
ecution of our algorithms. All the experiment were performed on 3Ghz P4 Intel Pentium with 1 GB main
memory, running on Linux Redhat 9.0.

After many evaluation tests, various thresholds was set to: ¢ = 0.5, 6 = 0.8 and p = 0.75.

Experiments 1: Intra-cluster load balancing

In the first set of experiments we focused results relating to objective metrics, according to various numbers
of tasks and worker nodes. We have varied the nodes number from 100 to 400 by step of 100. For each
node we randomly generate associated speed varying between 5 and 40 MIPS. The number of tasks have
been varied from 6000 to 10000 by step of 2000, with sizes randomly generated between 1000 and 200000
MI (Million of Instructions).

Table 1 shows the variation of the average response time (in seconds) before and after execution. We can
note the following:

— Proposed strategy allowed to reduce in a very clear way the mean response time of the tasks. We obtain a
gain varying between 7% and 57%.

— In more than 95% of cases, this improvement is greater than 15%.

— The lower improvements were obtained when the number of nodes exceed 350. We can justify this by the
instability of the Grid state (nodes are largely under-loaded).

— The best gains were realized when the number of nodes was between 200 and 300. In this case, we can say
that our strategy is optimal.

CARI 2008 - MAROC
- 636 -

Cari 2008+ 22/08/08 17:20 Page 637 $

Table 1. Improvement realized by intra-cluster strategy

Nodes 100 200 300 400
th # Tasks

Bef 6.00E+05 | 3.03E+04 | 6.44E+03 | 2.28E+03
6000 Afi 4.21E+05 | 1.49E+04 | 3.81E+03 | 2.11E+03
Gain 30% 51% 41% 7%

Bef | 9.06E+05 | 4.86E+04 | 1.05E+04 | 3.63E+03
8000 Afi | 6.46E+05 | 2.43E+04 | 5.76E+03 | 3.04E+03
Gain 29% 50% 45% 16%
Bef | 1.30E+06 | 7.42E+04 | 1.63E+04 | 5.63E+03
10000 | Afi | 9.39E+05 | 3.93E+04 | 7.03E+03 | 4.30E+03
Gain 28% 7% 57% 24%

Experiments 2: Inter-clusters load balancing

During these experiments , we interested to the inter-clusters load balancing behaviors. We have consid-
ered different numbers of clusters and we supposed that each cluster involves 30 worker nodes. Figure 2
illustrates the improvement of the mean response time, obtained by our load balancing strategy.

B 2 Clust
— = 60% - usters
— ‘ Q4 Clusters
Gi L 5 - el = ek - it = i @ 6 Clusters
"” 9 0% {---m---NH----- g e[5 & Clusters
rid, 0% 4 o 15 Cluste
re- 20% T :
10% T E:
ex-]
1ain 0% >
5000 6000 7000 28000 8000 10000 # Tasks
sers
ach Figure 2. Gain according to various number of clusters
ave
000 - Except the case of 16 clusters, all the profits are higher than 10%. We consider this important behaviour
very promising.
can - Best improvements are obtained when the Grid is in a stable state: (For # clusterse {4, 6, 8}).
. - The lower benefits were obtained when the number of clusters were set to 16. We can justify this by the
mna instability of the Grid state (Most nodes are underloaded or even idle).
the
say

CARI 2008 - MAROC
- 637 -

Cari 2008+ 22/08/08 17:20 Page 638 $

6. Conclusion

This paper addressed the problem of load balancing in Grid computing. We proposed a distributed load
balancing model which takes into account the heterogeneity of the resources and it is completely indepen-
dent from any Grid physical architecture.

Basing on this model, we defined a distributed load balancing strategy having two main objectives:

(i) Reduction of the mean response time of tasks submitted to a Grid computing;

(ii) Reduction of the communication costs during tasks transferring.

Relatively to the existing works, our strategy is fully distributed, uses a task-level load balancing and privi-
leges, as much as possible, a local load balancing to avoid the use of WAN communication.

The first results obtained on GridSim simulator are very promising. We have appreciably improved the
average response time with a weak communication cost.

In the future, we plan to integrate our load balancing algorithm on others known Grid simulators. This will
allow us to measure the effectiveness of our algorithm in existing simulators. We also envisage developing
our algorithm as a service of GLOBUS [4]. Finally,it is significant to take account, in a balancing algorithm
of application characteristics. More these characteristics are known, more the algorithm will be adapted,
which suggests adapting a strategy of balancing to a class of applications.

7. References

[1] BERMAN F., FOxX G., HEY Y., “Grid Computing: Making the Global Infrastructure a Reality”, Wiley Series in
Communications Networking & Distributed Systems, 2003.

[2] BUYYA R., “4 grid simulation toolkit for resource modelling and application scheduling for parallel and dis-
tributed computing”, www.buyya.com/gridsim/.

[3] CHERVENAK A., FOSTER I., KESSELMAN C., SALISBURY C., TUECKE S., “The data grid: towards an archi-
tecture for the distributed management and analysis of large scientific datasets”, Jour. of Network and Computer
Applications, vol. 23, num. 3, Pages:187-200, 2000.

[4] FoSTER I., “Globus toolkit version 4: Software for service oriented systems”, IFIP: International Conference on
Network and Parallel Computing, pages 2—13, Beijing, China, November 2005.

[5] FOSTER I. , KESSELMAN C. (EDITORS), “The Grid2: Blueprint for a New Computing Infrastructure”, Morgan
Kaufmann (second edition), USA, 2004.

[6] GENAUD S., GIERSCH A., VIVIEN F., “Load-balancing scatter operations for grid computing”, /2th Heteroge-
neous Computing Workshop (HCW 2003), IEEE CS Press, 2003.

[71 Hu Y.F., BLAKE R.J., EMERSON D.R., “An optimal migration algorithm for dynamic load balancing”, Con-
currency: Practice and Experience, vol. 10, Pages 467—483, 199

[8] JOHANSSON H., STEENSLAND J., “A performance characterization of load balancing algorithms for parallel
SAMR applications”, Technical Report 2006-047 from the Department of Information Technology, Uppsala Uni-
versity, 2006.

[9] SHANH., OLIKER L., BISWAS R.,, SMITH W., “Scheduling in heterogeneous grid environments: The effects of
data migration”, In Proc. of ADCOM2004: International Conference on Advanced Computing and Communication,
India, December 2004.

[10] Xu C.Z., LAuU F.C.M., “Load Balancing in Parallel Computers: Theory and Practice ”, Kluwer, Boston, MA,
1997.

[11] YAGOUBI B., “Modele d’équilibrage de charge pour les grilles de calcul”, Revue Afiicaine de la Recherche en
Informatique et Mathématiques Appliquées: ARIMA, vol 7:1-19, Juin 2007.

CARI 2008 - MAROC
- 638 -

