Cari 2008+ 22/08/08 17:20 Page 601 $

A solution for XQuery queries rewriting in LAV
approach in a mediation system

Ahmed Zellou!, Dalila Chiadmi’

Ecole Mohammadia d’Ingénieurs
Department of Computer Science
BP765, Rabat Agdal

MOROCCO
! zellou@emi.ac.ma, > chiadmi @emi.ac.ma

RESUME. La médiation d‘information suscite aujourd’hui un intérét particulier en vue de son
application dans de nombreux domaines (télé-enseignement, bibliothéques électroniques, etc.). La
médiation vise a intégrer un ensemble de sources d’information autonomes, hétérogénes, réparties
et évolutives via la définition d’'un schéma global qui représente le contenu des sources. Deux
approches (Global As View - GAV et Local As View - LAV) sont couramment utilisées pour définir
la relation de liaison entre le schéma global et le contenu des sources. Dans I'approche GAV, la
réécriture est simple. En revanche, dans I'approche LAV, la réécriture est difficile et nécessite le
recours a des algorithmes. Plusieurs algorithmes ont été proposés dans le modéle relationnel
(Bucket, régles d'inversions, MiniCon, etc.). Nous proposons dans cet article une adaptation de
I'algorithme Bucket pour la réécriture des requétes XQuery dans le modéle semi-structuré selon
I'approche LAV.

ABSTRACT. The information mediation attracts today a particular interest because its application
in many fields (e-learning, electronic libraries, etc.). The mediation allows integrating a set of
autonomous, heterogeneous and distributed information sources through the definition of a global
schema which represents the sources content. There are two main approaches (Global As View -
GAV and Local As View - LAV) that allow defining the mapping between the global schema and the
sources content. In the GAV approach, rewriting is simple. However, in the LAV approach, the
rewriting is difficult and requires the use of algorithms. Several algorithms have been proposed in
the relational data model (Bucket, inverse rules, MiniCon, etc.). We propose in this paper an
adaptation of the Bucket algorithm for the XQuery query rewriting in semi-structured data model
according to the LAV approach.

MOTS-CLES : médiation, réécriture, LAV, Bucket.
KEYWORDS: mediation, rewriting, LAV, Bucket.

CARI 2008 - MAROC
- 601 -

Cari 2008+ 22/08/08 17:20 Page 602 $

1. Introduction

The importance of query rewriting is not to demonstrate due to its use in numerous
application fields: mediation information, data warehouses, design websites, etc [1, 2].
In the information mediation context, users do not formulate their queries in terms of the
schema within the data is stored. The queries are formulated in terms of a global schema
(mediation schema). However, the data is stored in sources using other schemas (sources
schemas). Accordingly, the mediation system must rewrite users queries into queries
formulated in terms of sources schemas.

The information mediation concept dating back to 70 years, Levy defines mediation
as a transparent access service to a huge number of autonomous, heterogeneous,
dynamics and distributed information sources [2]. We define the information mediation
as an intermediate tool between a user or application, and a set of information sources;
this tool provides a transparent access to sources by a unique interface and query
language.

By providing to the user a unified global view on the information sources, the role of
the user is limited to put its query to the mediation system. The mediation system
interrogates thereafter all sources before returning the result to the user. The query is
done in a transparent manner to the user who has the illusion of facing a simple and
unique information source which is the mediation system.

Since the data is stored really in sources, the mediation system must have all sources
descriptions in order to rewrite the user’s queries in terms of sources schemas. These
descriptions provide a mapping between relations in sources schemas and global
schema. We refer by schemas integration, the construction process of a unified global
schema that establishes a connection between the different sources of a mediation
system. This schema presents to the users a global, uniform and centralized view on the
data distributed in sources, it’s the only information available to the user.

This paper is structured into six parts. After this introduction, the second part
presents approaches to link schemas in a mediation system as well as the queries
rewriting algorithms. We present in the third part the pretreatment needed to rewrite
queries for our solution. The fourth part presents the solution that we propose for
XQuery queries rewriting in LAV through the adaptation of the Bucket algorithm and a
prototype developed for this purpose. We present thereafter at the fifth part the limits of
our approach and we finish with a conclusion and the prospects for this work.

2. The schemas mapping approaches

The mapping specification between schemas will determine the difficulty of queries
rewriting, as well as the ease of adding or deleting sources within the mediation system.

CARI 2008 - MAROC
- 602 -

Cari 2008+ 22/08/08 17:20 Page 603 $

Two methods are commonly used to determine this mapping ; either the global schema
is considered as view on the local sources (GAV - Global As View) [3, 4, 5, 6], or,
conversely, local sources are considered as views on the global schema (LAV - Local As
View) [7, 8, 9, 10, 11]. We cite also the GLAV [12] approach which applies in the case
of necessity to put query recursive on sources, as well as the BAV approach (Both As
View) [13], which adapts to the peer-to-peer mediation environments.

In the GAV approach, the global schema is defined in terms of local sources
schemas. The first step to implement this approach is to define a global schema which
covers data involving users. Thereafter, for each relation in global schema, a query
specifying how to obtain data of this relation from sources schemas is defined. However,
the LAV approach goes in the opposite direction. After defining the global schema, the
content of each source is described as a view of the global schema.

In the GAV approach, the query rewriting is much simpler and straightforward, just
browsing the links between the relations in global schema and theses in sources schemas
to rewrite the query. However, the addition or deletion of one or more sources in the
system requires redefining the global schema. In particular, the addition of a new source
requires redefining the relations of global schema that can extract data from the new
source.

On the other hand, knowing that each source is described separately in the LAV
approach, the addition or deletion of a source is not a problem. We have just to describe
the new source in the form of view (query) on the global schema. In contrast, query
rewriting in the LAV approach is more difficult than in the GAV approach because each
source is described separately.

The two approaches are not in contradiction, but complementary, the use depends on
the mediation context. To integrate few and static sources, it is better to use the GAV
method. However, in the large-scale integration context, the LAV method is preferable
because a major change at a local source will have no impact on the global schema.

Knowing that the rewriting of queries is difficult in the LAV approach, solutions are
needed for subqueries generation in this context. Rewrite the user’s query, in this case, is
to rewrite this query using a set of views. Three queries rewriting algorithms in terms of
views have been developed in the information mediation context. The first algorithm
named (the Bucket algorithm) has been implemented under the Information Manifold
mediation system [14]. In this algorithm, queries, views and rewriting produced are
conjunctive queries with comparison predicates. The second algorithm named (the
inverse rules algorithm) has been implemented under the InfoMaster mediation system
[15]. The accepted views and rewriting produced are conjunctive queries without
comparison predicates. The last algorithm named (the MiniCon algorithm) results of a
combination of the two previous algorithms [16]. In this case, the queries and views are
conjunctive queries with arithmetic comparison predicates. The three algorithms are

CARI 2008 - MAROC
- 603 -

Cari 2008+ 22/08/08 17:20 Page 604 $

developed in a specific context in which the query languages used in the mediation
systems are relational.

Several systems use the GAV approach for schema mapping (InfoSleuth, LeSelect,
TSIMMIS, TAMBIS, MOMIS, Disco, InterMed, DiscoveryLink, XMF and Xperanto)
[3, 17, 18, 19, 20]. In contrast, the systems Manifold, Nimble, Agora and E-XMLMedia
use the LAV approach [21, 22, 23]. In conclusion, few systems adopt the LAV approach
for schema mapping. Agora uses the query language quilt. Thus, E-XMLMedia uses the
query language Xpath and describes the mediation metadata as a DTD. We believe that
XPath and quilt are less wealthy than the XQuery to express queries on semi-structured
data. Thus, presenting the mediation metadata as DTD does not provides enough
mechanisms to describe this kind of information. The purpose of this paper is to propose
a solution for rewriting XQuery queries in the LAV approach with a mediation metadata
description as XMLSchema.

3. Rewriting Pretreatment

We present now our contribution, namely : a solution for XQuery queries rewriting
in the LAV approach. Formally, if XSG is the global schema of the mediator and if XSL;
are local schemas of sources S; (I <i <n), then according to the LAV approach, XSL; =
Vue; (XSG) (I <i <n). In order to define the mapping between the global schema XSG
and local schemas XSL;, we propose to associate to each source S;, a metadata XSL; in
XMLSchema with XSL; is a subset of XSG.

The rewriting requires a set of information, namely the global schema expressed in
XMLSchema, local schemas of sources also expressed in XMLSchema and the mapping
between the global schema and local schemas of sources. This information, once
received and stored in a catalog, requiring a pre-treatment for our rewriting solution.

After defining XSG and XSL schemas in XMLSchema, a set of plans is derived from
these schemas that allows : identifying each element or attribute in the XSG and XSL
schemas as well as the access path to it in the catalog, establishing the mapping between
the elements and attributes of the local schema and those of the global schema and
finally associating with each local schema a key (KIFs) aims to specify the relation
between the XML fragments after execution.

4. The XQuery queries rewriting in LAV

We present in this part our solution of XQuery queries rewriting in LAV. The
solution we are proposing is an adaptation of the Bucket algorithm in semi-structured
data model.

The query canonization

CARI 2008 - MAROC
- 604 -

Cari 2008+ 22/08/08 17:20 Page 605 $

The user formulates his query in terms of XSG schema using the XQuery query
language. The first phase, called canonization, consists of removing in the user query the
set of representation tags.

The query atomization

Each user query contains two types of variables, variables that are in the condition
"where" (we call them conditional variables) and variables that are in the return block
"return" (we call them effective variables). The atomization consists to decompose the
query into a set of subqueries (named atomic subqueries), each concerns one variable.
The atomization is done by determining the two types of variables on which the query
find. Thereafter, we generate a subquery for each atomic variable, effective or
conditional, in the user query (named respectively effective atomic subquery (denoted
AQ_Effe;) and conditional atomic subquery (denoted AQ_Cond,)).

The identification

For each effective atomic subquery AQ_Effe;, the return expression Expression,(X;)
can be reduced to an expression like pathy/var; (1 <i < n). The next step is to identify
the effective variables var; in the atomic subqueries as well as the sources where atomic
subqueries should be sent from plans. Thereafter, we fetch from the catalog the elements
and attributes idelement;; are equivalent to each variable var; in local schemas. In this
context, an atomic subquery can be rewritten into several subqueries, each covering a
variable in a local schema. The next step is to determine the access path to each variable
idelement;; in the local schema of source idsource; j, from the root, named path, ;.

On the other hand, for each conditional atomic sub-query AQ_Cond,, the expression
Condition({X;}) (I <k < m, 1 <j < n) can be rewritten into an expression like
({pathyvar; op const] Op;) (I <j < m) where op is a comparison operator op € {<, < 2,
> ==,! =, contain}, Op; is a link operator Op; € {and, or,!, xor} with Op,, = NULL and
const is a constant. Thereafter, we treat the variables in the conditional atomic
subqueries. The objective is to identify the sources involved in constraint definition in
each conditional atomic subquery definition. The processing of conditional atomic
subqueries variables carried out in three steps. In the first, we identify conditional
variables var; in the atomic query AQ_Cond; : {var; op const]. In the second step we
determine the equivalent elements and/or attributes to each conditional variable in the
local schemas as well as their sources and in the third step we determine the access path
for each variable from the root source.

Adaptation of the Bucket algorithm

The solution that we propose is an adaptation of the Bucket algorithm. For each
effective atomic subquery, a green bucket is constructed in which we put the rewriting
result of the subquery. In some way, for each conditional atomic subquery, a red bucket
is constructed in which we put the rewriting result of the subquery. Moreover, a bucket
blue is constructed in which we put a set of subqueries allowing us to retrieve the keys

CARI 2008 - MAROC
- 605 -

Cari 2008+ 22/08/08 17:20 Page 606 $

(KIFs) from all sources. Each subquery, named identification subquery (denoted
AQ_KIF;), allows extract the KIF key from only one source.

The generation of the execution plan

An execution plan is a tree structure incorporating at leaves level the atomic
subqueries and at nodes level the operators (joints, restriction, projection, etc.) as well
as the function operators. At the end of the preceding step, we get a set of atomic
subqueries : effective, conditional and fragments identification.

Each bucket can contain several rewriting of the atomic subquery in which it is
associated. Thereafter, we choose a single rewriting by bucket. The choice can be
justified by optimization reasons (the quickest source, the most efficient source, etc.).

Suppose that a rewriting R_E; (I < j < n;) was chosen for the effective atomic
subqueries FAQ; (I <i < n). Suppose also that a rewriting R_C; (I <k < m;) is chosen
for the conditional atomic subqueries Rg_C; (I <i <m). The execution plan is generated
in three steps :

— Step 1 : determine for each rewriting R_E; (respectively R_C;) for an effective
atomic subquery R_E; (respectively R_C}), which retrieves results from a source S, the
fragments identification query AQ_KIF; of the source S; (available in the blue bucket).
Thereafter, we merge each rewriting with its fragments identification query AQ_KIF,.

— Step 2 : with an inspection of sources for each atomic subquery, we can combine
those of the same source. The combination of two effective atomic sub-queries R_F; and
R_E; (res. R_C; and R_C;) will generate an effective atomic sub-query denoted R_E
(res. R_Cyg)).

— Step 3 : merge the all new effective rewriting R_E; (1 <i < n) and the all new
conditional rewriting R_C, (I < k < m;) using the operators Op, (I <k <m;) in a single
execution plan.

Prototype

We have developed a prototype of our solution for Xquery queries rewriting in LAV
approach by adopting the Bucket algorithm. This prototype is based on PHP, Mysql,
javascript and XML technologies. We present below a screen that presents the atomic
subqueries generated for an example query.

CARI 2008 - MAROC
- 606 -

Cari 2008+ 22/08/08 17:20 Page 607 $

T —

Eichier Edifon @ffichage tistorique Marque-pages Yahoo! Quils 2 <&

- -@ O [rwunreseaanan Tl oo)
O - YT -2 - [=] f seerch wob - 881 ~| &2 et - @ o verwo! 3 shoocing - @ comes + & s ~ €D pnswers = »
| [sir: systame danformation & R...
SIR E - ISD
Systéme d'Information & £ I Information System &
Répartition = Distribution

[query |[xsc |[xsts |[ciws | [[cies [on |[Aemization | [Pian || |[vider e caraiogue |

For Sam It . b in lbrary/bo okstore/book where Salr 7="Morocco" where b/1d_book=8al books_listbook_Id and B
Sbiprice/curreny="dirhams" and Sbiyear > 2003" and contains (Ebiitieitext(),’s) return ((Sb/title) 3. ($bi 40} ,(Saname})

Résultat Atomisation de Ia requéte
Les s quétes i it Les sous-requétes
CIEs

Les sous-requétes atomiques effectives

[For 8 in thbrary/bookestorerbakc where ffor $a m
5
[For S in library/boolkstoreTbook remarm (Sbitie] W i%"]’x:“;:‘”‘“““ |
for 8 in oraryoookstorefbook remn B e i ot e i
[for S Sain e
for Fia i Shrers/outhors/ auhor reurn {Sa/naree lwhere $b/I1d_book=$af books lstrbook Id return retum $a
[or $ in brary/bookstorefbook return S/l book)
R
0} [For 86 m tbrarw/bo olestorerb ool where contains
: retum (55 O}

hitp: /{172.52.1 4]LAVftest pho |

Figure 1. The query atomization.

5. Our approach limitations

The solution that we have presented is an adaptation of the Bucket algorithm for
XQuery queries rewriting in LAV and in a semi-structured data model. We faced two
major problems in the semi-structured data model :

— in the relational model, for which the Bucket algorithm was proposed, the user
query is in advance divided into several relations, which facilitates the association of
buckets to the query relations. In XQuery, the query is not decomposed, and that is why
we generate the atomic subqueries.

— in the original Bucket algorithm, the views to put in a bucket are calculated and
materialized in advance. In our case, the views are not calculated in advance (except the
KIFs views) and that is why we rewrite each atomic subquery before putting the result
rewriting in buckets.

Our solution can be used in the majority of cases, in spite of some limits related to
the nature of the query and the choice of rewriting. On the nature aspect of the query,
our solution supports the selection, projection and joint queries. For the selection
queries, our solution supports queries whose selection criteria is defined as {var op
var/const} Op where var is a variable, const is a constant, op is a comparison operator
(<, < = >,==,! =, contain), and Op is a link operator (and, or,!, xor). But our solution
is not running for queries finding some functional expressions as sum, avg, count, min
and max. In the other hand, our solution assumes that a choice is to do at each bucket
one choice only among several possible rewritings thus enabling our solution to use an

CARI 2008 - MAROC
- 607 -

Cari 2008+ 22/08/08 17:20 Page 608 $

optimization strategy. For lack of choice, our algorithm remains blocked at this level.
We believe that it’s possible to join all rewritings of a bucket to form a single rewriting
thus avoiding the selection process. Once adopted, this solution would deprive our
algorithm of its efficiency to choose a single rewriting by bucket.

The keystone of a mediation system is its global schema. A rich and optimal schema
remains a heavy task for the catalog administrator. A light schema facilitates queries
processing, but does not deal all sources characteristics and does not allow the addition
of certain sources in the system. A rich schema, however, complicates queries definition.
Managing keys in this case must be done carefully to return consistent results.

6. Conclusion and future works

We have proposed in this paper a solution for the XQuery query rewriting on the
LAV approach. Given the fact that queries rewriting can be done only according to the
information stored in the catalog. We declined our solution into two basic constituents.
The first is how we manage the information (required for rewriting) stored in the catalog
through defining a set of plans and. The second is how we rewrite queries through an
adaptation of the Bucket algorithm.

As future works, we will extend our solution to support the different types of
XQuery queries (min, max, count, etc.). We will also proposing a solution to support
applications that require recursive queries on the sources.

7. References

[1] Xiaolei, Q., “Query folding”. In Proc. of Int. Conf. on Data Engineering (ICDE), New
Orleans, LA, 1996, PP. 48-55.

[2] Levy, A. Y., “Logic-based techniques in data integration”, Logic Based Artificial
Intelligence, 2000.

[3] Garcia-Molina, and al., “The TSIMMIS project: Integration of heterogeneous
information sources”. Journal of Intelligent Information Systems, 1997, pp. 8(2):117-132.
[4] Papakonstantinou, Y., and al., “Object fusion in mediator systems”. In Proceedings of
International Conference on Very Large Databases (VLDB), Bombay, India, September
1996, pp. 413-424.

[5] Adali, S., and al., “Query Caching and Optimization in Distributed Mediator Systems”.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Montreal, Canada, ACM, New York, June 1996, pp. 137-148.

[6] Florescu, D., and al., “Answering queries using OQL view expressions”. In Workshop on
Materialized Views, in cooperation with ACM SIGMOD, Montreal, Canada. 1996.

[7] Levy, A. Y., “The Information Manifold Approach to Data Integration", IEEE Intelligent
Systems, 1312-16, 1998.

CARI 2008 - MAROC
- 608 -

Cari 2008+ 22/08/08 17:20 Page 609 $

[8] Kwok, C. T. and Weld, D. S., “Planning to gather information". In Proceedings of the
AAAI Thirteenth National Conference on Artificial Intelligence. 1996.

[9] Duschka, O. M., and Genesereth, M. R., “Answering recursive queries using views". In
Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Tucson, Arizona. 1997.

[10] Friedman, M., and Weld, D. “Efficient execution of information gathering plans". In
Proceedings of the International Joint Conference on Artificial Intelligence, Nagoya, Japan.
1997.

[11] Ives, Z., and al., ““An adaptive query execution engine for data integration". In Proc. of
ACM SIGMOD Conf. on Management of Data. 1999.

[12] Friedman, M., and al., “Navigational plans for data integration". In Proceedings of the
National Conference on Artificial Intelligence. 1999.

[13] Boyd, M., and al. “AutoMed: A BAV Data Integration System for Heterogeneous Data
Sources". In Advanced Information Systems Engineering 16th International Conference,
CAISE, Riga, Latvia, June 7-11, Proceedings .Springer-Verlag, 2004.

[14] Levy, A. Y., and al., “Querying heterogeneous information sources using source
descriptions". In Proc. Of the Int. Conf. on VLDB, Bombay, India. 1996.

[15] Duschka, O. M., and Genesereth, M. R., “Query planning in infomaster". In
Proceedings of the ACM Symposium on Applied Computing, San Jose, CA. 1997,

[16] Pottinger, R., Halevy, A. Y., "MiniCon: A scalable algorithm for answering queries
using views". VLDB Journal, 10(2-3):182--198, 2001.

[17] Bayardo, R. J., and al., “InfoSleuth: Agent-Based Semantic Integration of Information
in Open and Dynamic Environments", ACM SIGMOD, 1997.

[18] Beneventano, D., and al., “The MOMIS approach to information integration”. In AAAI
International Conference on Enterprise Information Systems, ICEIS 2001.

[19] Haas, L., and al., “DiscoveryLink : A System for Integrating Life Sciences Data", IBM
Systems Journal, vol. 2, 2001.n, 40.

[20] Kangchan, L., and al., “A Design and Implementation of XML-based mediation
Framework (XMF) for Integration of Internet Information Resources". In Proceedings of the
35th Hawaii International Conference on System Sciences, 2002.

[21] Draper, D., and al., “The Nimble Integration Engine". In SIGMOD Record (ACM
Special Interest Group on Management of Data), volume 30, 2001.

[22] Manolescu, L., and al., “Agora: Living with XML and relational". In Proc. of the VLDB
Conf. Software demonstration. 2000,

[23] Dang-Ngoc, T. T., and Gardarin, G., “The XML Mediator", Document technique
interne a e-XMLMedia, 26 pages, 2002.

CARI 2008 - MAROC
- 609 -

