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RESUME. Résumé

ABSTRACT. We present a novel approach for the derivation of PDE modeling curvature-driven flows
for color images. We endow the color space with the Helmholtz metric and we derive the differential
geometric attributes, such as the covariant derivative and the Christoffel symbols. Then we use these
materials to extend scalar-valued mean curvature and snakes methods to the color image setting.
Experiments on synthetic image show that the proposed methods are highly robust.
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1. Introduction

Throughout this communication, we refer by “segmented image”to an image which
has piecewise homogeneous (simplified) regions.

Image segmentation is the first step in image analysis and pattern recognition. It is a
critical and essential component of image analysis and one of the most difficult tasks in
image processing and determines the quality of the final result of analysis.

The segmentation techniques for monochrome images can be extended to segment color
images by using R, G and B or their transformations (linear/non linear) [7, 8, 9, 10].

The generalization of the PDEs methods used for Gray level image to color image is
being pursued with mainly three techniques :(1) application of Gray level methods di-
rectly to each component of a color space, then the results can be combined in some way
to obtain a final restoration result. However, one of the problems is how to employ the
color information as a whole for each pixel. (2) the use of Di Zenzo’s concept of a struc-
ture tensor to create a dependance between color channels ; and (3) differential-geometric
methods.

The aim of the present paper is to give a natural generalization of curvature driven
methods, like the mean curvature motion (MCM), modified mean curvature flow and self
snakes, to color. The key ingredient for these generalizations is the use of the Riemannian
geometry of the color space.

We use the fact that when we come to deal with general (warped) spaces, the appro-
priate initial concept on which to base all geometry is that of the scalar product operation
on pairs of tangent vectors [3]. Then, we can perform the measurements on the manifold
like lengths and angles in terms of the scalar product. The concept of length determines
what we call metric. In the numerical experiments section, we have used the affine metric
which is, in the context of color perception, nothing but the Helmholtz metric.

2. Differential Geometry of the Helmholtz Color Space

Hermann von Helmholtz (1821-1894), was the first who had attempted to mathemati-
cally formulate the distance between colors by the concept of line element. He define the
following line element :

dR\? [dG\? [dB\?
w= (%) (%) (%) "

where R, G and B are the three color channels : Red, Green and blue. In local coordinates,
this can be expressed as a positive definite symmetric matrix :

= 0 0
(gij)i,j:1,2,3: 0 % 01, 2)

0 0 Iiz

3

where we use the coordinate notation 1 = R, x> = B and z3 = G.
The color space is defined as a domain €2 in the positive orthant Ri defined by :

R} ={zeR’ z;>0, i=1,2,3} ®)
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We remark that the introduction of the Helmholtz metric, which is affine, is equivalent
to the nonlinear coordinate transformation u; = log(x;),i = 1,2, 3, with the Jacobian

matrix
= 0 0
Jux)={0 - 0|, xeR’ 4)
0 0

and that a nonlinear coordinate transformation corresponds to the introduction of a Rie-
mannian metric given by the Jacobian matrix in the form of G(x) = Ju(x)? Ju(x) on
the definition domain[6]. We note that the color space is geodesic convex with respect to
the helmholtz metric.

Having the expression of the metric, we can now give the 33 Christoffel symbols using

the formula : ) , ;
L= —g" 9951 | 99k _ 995k | )
! 2 8-7% 8-'15]‘ 6xl
and hence
1 . 9 _ L , B ;
e I B I B N
0 0 0 0 0 0 0 0 _%

We can derive now the differential equation of the geodesic arcs which is equal to

a"(s) = x,(s)xé(s)z, s €[s1,8], i=1,2,3, (6)
ie.,
(22&3) =0, s€]ls1,82], i=1,2,3, (7)

where s is the arc-length parameter. It follows that the solution (s) = (z1(s), z2(s), z3(s))
is defined on the whole R and

zi(s) = e®sthi g eR, i=1,2,3. 8)

If we consider two arbitrary points x,y in the Helmholtz color space, then a geodesic
joining them is

(zyeloglyr)—log(z1))s o) gllog(ya)—log(x2))s g e (loa(ys)—log(ra))s)

1—s S 1—s S 1—s s
(1’1 Y1,T2 Yz, T3 y3>a

7(s) s €[0,1],

()]
because v(0) = x, y(1) = y and the coordinate functions are positive, so their values are
completely included in R3.

3. Immersions and Mean Curvature

Now let ¢ : M — N be an immersion of a manifold M into a Riemannian manifold
N with metric g.The mapping ¢ induces a metric ¢*g on M defined by

g (Xpa Yp) =4g (¢*(Xp)a ¢*(Yp)) . (10)
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This metric is called the pull-back metric induced by ¢, as it maps the metric in the
opposite direction of the mapping ¢. An isometry is a diffeomorphism ¢ : M — N that
preserves the Riemannian metric, i.e., if v and g are the metrics for M and IV, respectively,
then v = ¢™g.

The first fundamental form associated with the immersion ¢ is h = ¢*g. Its components

are hog = 0a¢'0p¢7 g;j where 9" = gf; . The total covariant derivative Vd¢ is called
the second fundamental form of ¢ and is denoted by 711" (¢). The second fundamental
form I1™ takes values in the normal bundle of M. The mean curvature vector H of an
isometric immersion ¢ : M — N is defined as the trace of the second fundamental form

IT™ (¢) divided by m = dim M [4]. In the case of space color m = 3.

H = itr7 1M (). (11)
m

In local coordinates, we have [4]

d¢ 9

mHi’ = AM'd)i +’Yaﬁ($)NP;k (¢($)) %W

(12)

where ¥ F; . are the Christoffel symbols of (N, g) and Ay, is the Laplace-Beltrami ope-
rator on (M, ) given by

1 0 O
[ = —(/ ap 2%
Ant det vy 0z < detyy oxP > ' (13)

4. Geometric Curvature-Driven Flows for Color images

The basic concept in which geometric curvature-driven flows are based is the mean
curvature of a submanifold embedded in a higher dimensional manifold. Here we gene-
ralize the scalar mean curvature flow to mean curvature flow in the space-feature ma-
nifold. For this, we embed the Euclidean image space {2 into the Riemannian manifold
Q ® R3, and use some classical results from differential geometry to derive the Rieman-
nian Mean Curvature (RMC). We then use the RMC to generalize mean curvature flow
to the Vector-valued data. Given the expression of the mean curvature vector H, we can
establish some PDEs based Color-image segmentation. Especially, we are interested of
the so called level-set methods, which relay on PDEs that modify the shape of level sets
in an image.

4.1. Minimal Surface Flow
The motion by the mean curvature vector H yields the Minimal Surface flow :

¢’ = H'. (14)

This flow can be considered as a deformation of the Color field toward minimal immer-
sion. Indeed, it derives from variational setting that minimize the volume of the embedded
image manifold in the space-feature manifold.
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4.2. Riemannian Mean Curvature Flow

The following flow was proposed for the processing of scalar-valued images

Opu = |Vuldiv &, w(0,z,y) = uo(x,y), (15)
[Vul
where ug(x,y) is the Grey level of the image to be processed, u(t, x, y) is its smoothed
version that depends on the scale parameter t.

The “philosophy"” of this flow is that the term |Vu|div ;—Zl represents a degenerate
diffusion term which diffuses u in the direction orthogonal to its gradient Vu and does
not diffuse at all in the direction of Vu.

This formulation has been proposed as a “morphological scale space" [2] and as more
numerically tractable method of solving total variation.

The natural generalization of this flow to Color image is

o' = |Vl HY, i=1,...,d, where V¢"= (v;;) V¢ (16)

and . .

V7¢ly = 'Yaﬁgijaagblaﬁgbj :
We note that several authors have tried to define the norm of vector-image. Most of them
use some generalization of the De Zenzo norm. We think that the former equation is the
correct generalization, and what we find in the litterature are particular cases done by
particular choices of the feature-space metric.

4.3. Modified Riemannian Mean Curvature Flow

To denoise highly degraded images, Alvarez et al. [1] have proposed a modification
of the mean curvature flow equation (15) that reads

Vo
Vol
where K is a smoothing kernel (a Gaussian for example), K * V¢ is therefore a local
estimate of V¢ for noise elimination, and ¢(s) is a nonincreasing real function which
tends to zero as s — oo0. We note that for the numerical experiments we have used
c(|Vel) = k/(k* +|Vol?).

The generalization of the modified mean curvature flow to color image processing is

0" = c(IKxV7¢ly) V¢l H',  ¢'(0,2) = ¢,(9), (18)

at¢ = C(|K*ng)|) |V¢| div ¢(07$7y) = ¢O(x7y)7 (17)

4.4. Riemannan Self-Snakes

The method of Sapiro, which he names self-snakes introduces an edge-stopping func-
tion into mean curvature flow

o = |Voldiv (e (K x|Vol) 24

¢ (K * [Vo]) [V6| div (19 ) + Ve (K * Vo) - Vo

19)

Comparing equation (19) to (17), we observe that the term Ve (K % |V¢|) - V¢ is missing
in the old model. This is due to the fact that the Sapiro model takes into account the image
structure. Indeed, equation (19) can be re-written as

at¢ = fdiﬁ'usion + fshocka (20)
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where
Faittusion = ¢ (K % |V¢|) |Vo| div Ve
diffusion |V | Y

Fshock = Ve (K* |V¢|) -Vo.

The term Fyirusion 18 as in the anisotropic flow proposed in [1]. The second term in (20),
re., Vc - V¢, increases the attraction of the deforming contour toward the boundary of
“objects” acting as the shock-filter for deblurring. Therefore, the flow Ve - V¢ is a shock
filter acting like the backward diffusion in the Perona-Malik equation, which is respon-
sible for the edge-enhancing properties of self snakes. See [7] for detailed discussion on
this topic.

We are now interested in generalizing Self-Snakes method for the case of Color image.
We will start the generalization from equation (20) in the following manner

at¢ = j:diﬁusion + fshockv (21)

where .
fdijfusion = ¢ (K* |vﬂy¢|g) |v‘/¢|gH1

Fshock Ve (K *|Vgl,) - Vi (22)

5. Numerical Experiments

We give numerical experiments only for the self snakes method since it is the most
general case.

Figure 1. Original image (left) Highly degraded image (center) Segmented image (right)

In this paper we generalized several curvature-driven flows of Gray level image to
Color image. The use of the differential-geometric tools and concepts yields a natural
extension of these well-known scalar-valued data processing methods to vector-valued
data processing.
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