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RÉSUMÉ. Nous étudions l’extension du modèle classique de Ross-Macdonald aux environnements hétérogènes formés de plu-

sieurs zones géographiques. Nous supposons que les hôtes humains migrent entre les zones et que les moustiques ne migrent

pas. Le cas particulier où le taux migration ne dépend pas du statut épidémiologique a été complètement étudié dans [1]. Ici,

nous nous intéressons au cas où le taux migration varie selon le staut épidémiologique. En supposant que le phénomène de

migration est plus rapide que le phénomène épidémiologique, nous nous servons de la méthode d’aggrégation de variables ( voir

[7] ) pour réduire le modèle. Nous donnons une formule pour le taux de reproduction de base R0 , et montrons par des simulations

numériques que lorsque R0 < 1 l’équilibre sans maladie (DFE) est globalement stable. Nous montrons aussi que pour R0 > 1,

le modèle admet plusieurs équilibres endémiques.

ABSTRACT. We study the extension of the classical Ross-Macdonald model which describes the dynamics of malaria, to het-

erogeneous environments composed of several geographics zones. We assume that the hosts migrate between zones while

mosquitoes do not. The particular case where the rate of migration does not depend on the epidemiological status was completely

studied in [1]. Here we are interested in the case where the migration rates vary with the epidemiological compartments. Assuming

that migrations are fast compared to the speed of the epidemiological phenomenon, we use the aggregation method ( see [7] )

to reduce the model and give an explicit formula for the basic reproduction ratio R0. We show using numerical simulations that if

R0 < 1, then the disease free equilibrium (DFE), is globally stable. When R0 > 1, we show that the model has multiple endemic

equilibria.

MOTS-CLÉS : Modèle de metapopulation, Ross-Macdonald, dynamique, migration rapide, taux de reproduction de base, équi-

libres endémiques.
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1. Introduction

Malaria is a life-threatening disease caused by parasites that are transmitted to people through the bites of infected

mosquitoes.

According to a recent World Malaria Report ( see [6] ), there were around 243 millions cases of malaria in 2008

worldwide. The vast majority of cases (85 % ) were in the African Region. Malaria accounted for an estimated

863 000 deaths in 2008, of which (89 percent) were in the African Region. Malaria is preventable and curable.

Therefore, there is a strong need to understand the key factors in the transmission of malaria in order to formulate

effective prevention and control strategies for this disease. Among the key factors in the transmission is the spa-

tial or geographic heterogeneities that can be modeled using an approach based on the metapopulation concept.

Here, the space is considered discrete and one considers sparsely populated geographic zones, corresponding to

locations such as villages where groups of human population are located ( see [1]-[2] ), with migrations between

zones. Within a zone or patch, the human population is subdivided into compartments corresponding to different

epidemiological status. In this paper, we use the formulation that considers local infections within patches, with

migrations of humans (hosts) between patches ( see [1] ).

Classically, the basic reproduction ratio R0, is defined as the number of new infections produced by a typical infec-

tive individual introduced in a susceptible population ( see [5], [4], [3] ). Unlike the classical model introduced by

Ross and Macdonald, that has a unique stable disease free equilibrium when R0 ≤ 1 and a unique endemic equili-

brium when R0 > 1, the model presented here exhibits a different behavior. Indeed, we show that if the migration

process is faster than the epidemic phenomenon, and the migration rates of susceptible humans are different from

those of infective hosts, then there can be multiple equilibria for R0 > 1.

The remaining of this paper is organized as follows : the general multipatch

Ross-Macdonald model is presented in section 2 ; assuming fast migrations, the aggregated method is used to

obtain a reduced model in section 3 ; the formula for R0 is presented in section 4 and the existence of endemic

equilibria is shown in section 5.

2. Model formulation

2.1. Notations

We start with the extension of the Ross-Macdonald model in [1] , in a particular case where the mosquitoes are

present in all patches and the rate of migration of susceptible hosts are different from those of infectives. We use

the following notations and definitions :

n : the total number of geographic zones (patches), numbered from 1 to n

Hi, Vi : the total host and mosquitoes populations of patch i, respectively,

H , V : the total host (susceptibles and infectives) and mosquitoes populations respectively,

Sh,i, Ih,i : the susceptible and infective host populations patch i, respectively,

Soh, Ioh : the total susceptible host and infective host populations respectively,

Iv,i : the infectious mosquitoes population of patch i,

ai : the man biting rate of mosquitoes in patch i,

b1,i : the proportion of infectious bites on hosts that produce a patent infection in patch i,

b2,i : the proportion of bites by susceptible mosquitoes on infectious hosts that produce an infection in patch i,

γh,i : the per capita rate of host recovery from infection in patch i,

µv,i : the per capita rate of mosquito mortality in patch i,

ms
i,j : the migration rate of susceptible hosts form patch j to patch i,

mI
i,j : the migration rate of infectious hosts form patch j to patch i,



2.2. Hypothesis

We assume that the migration phenomenon is faster than the epidemiological process. This means that there are

two time scales : a first one τ for the migration process and the second one t for the epidemiological process. Thus,

t = ε τ , where ε is a very small positive number. For instance if ε = 0.01, then for a migration time τ = 100, the

epidemiological time is t = 1. As in classical Ross-Macdonald model, we neglect the natural morbidity rate µh,i

of (hosts) and the recovery rates γv,i of mosquitoes for i = 1, ..., n.

2.3. The complete model

The differentiation with respect to the migration process time scale τ leads to the following system of equations :

Ṡh,i =
n∑

j �=i

ms
i,j Sh,j − Sh,i

n∑

j �=i

ms
j,i − ε b1,i ai Iv,i

Sh,i

Hi

+ ε γh,i Ih,i (1)

İh,i =

n∑

j �=i

mI
i,j Ih,j − Ih,i

n∑

j �=i

mI
j,i + ε b1,i ai Iv,i

Sh,i

Hi

− ε γh,i Ih,i (2)

İv,i = ε b2,i ai (Vi − Iv,i)
Ih,i

Hi

− ε µv,i Iv,i (3)

2.4. Remarks

It’s worth noting if ms
i,j = mI

i,j = mi,j for all i, j, (i.e the migration rates do not depend on the epidemiological

status of hosts), then one can sum equations (1) and (2) to obtain the single equation

Ḣh,i =
∑n

j �=i mi,j Hh,j −Hh,i

∑n

j �=i mj,i that governs the evolution of the total host population in the different

patches, then study the coupling of that equation with equations (2) and (3). This particular case was solved in [1].

Hereafter, we assume that the rates of migration depend on the epidemiological status of the host ( i.e, there exist

i, j such that ms
i,j �= mI

i,j).

3. Reduction of the model

Thanks to the existence of two times scales, a fast one for migration and a slow one for the epidemiological process,

we can apply the "aggregation method" and proceed in two steps as follows :

Step 1 : neglect terms of order of ε in the complete system, and find the stable equilibria for the fast system.

Step 2 : substitute the fast equilibrium into the equations of the initial model ( see [7] ) in order to obtain the reduced

equivalent model. This aggregated model is much simpler and can be used to compute the basic reproduction

number of the system.

3.1. Analysis of the fast system : (ε = 0)

3.1.1. Fast equilibria and their stability

Let ε = 0, Sh = (Sh,1, Sh,2, ..., Sh,n) Ih = (Ih,1, Ih,2, ..., Ih,n) We define the matrices Ms and M I describing

the movements of susceptible hosts and infected hosts respectively as follows :

Ms(i, j) = ms
i,j , M

s(i, i) = −
∑n

j=1,j �=i m
s
j,i ; M I(i, j) = mI

i,j , M
I(i, i) = −

∑n

j=1,j �=i m
I
j,i

With theses notations (1− 2) becomes

Ṡh = Ms Sh (4)

İh = M I Ih (5)



Assume as in [1] that the matrices Ms and M I are irreducible. Following the proof in [1], since these matrices

are positive, it’s easy to show that there exists a unique equilibrium for the susceptible hosts ( see (4) ) and a

unique equilibrium for the infected hosts ( see (5) ) each of which is asymptotically stable. In order to obtain these

equilibria, first observe that for ε = 0, then the total susceptible host Soh and the total infective host Ioh are constant

since
∑n

i=1
Ṡh,i =

∑n

i=1
İh,i = 0, in other words the total susceptible hosts and the total infected hosts are both

constant such that H = Soh + Ioh is also a constant. Therefore, if we denote by Sh and Ih the aforementioned

fast equilibria, then by [1] there exist positive vectors W s and W I such that : Sh = Soh W
s, Ih = Ioh W

I ;

Moreover W s = (d1, d2, . . . , dn), W I = (c1, c2, . . . , cn) ,
∑n

i=1
di =

∑n

i=1
ci = 1 ; where di, ci are positve

real numbers depending on Ms
i,j and M I

i,j respectively.

3.2. Aggregated model : Reduced system

Here we substitute the fast equilibria Sh,i = Soh di and Ih,i = Ioh ci into the initial system and sum over the host

population to get the model governing the evolution of the total host population and the evolution of the mosquitoes

populations in each patch.

For the sake of simplicity, let’s denote :
∑n

i=1
Sh,i = Soh,

∑n

i=1
Ih,i = Ioh, γi = γh,i, µi = µv,i

According to the above remark, the total host population

H =
∑n

i=1
Sh,i +

∑n

i=1
Ih,i =

∑n

i=1
Sh,i +

∑n

i=1
Ih,i = Soh + Ioh is constant. We have Soh = H − Ioh.

Let us normalize the host variables by setting :

x =
Ioh

H
, yi =

Iv,i

Vi

,mi =
Vi

H
, β1,i = b1,i ai , β2,i = b2,i ai , γ =

n∑

i=1

γi ci

System (1-2-3) becomes

ẋ =
n∑

i=1

β1,i mi di yi
(1− x)

ci x+ di (1− x)
− γ x (6)

ẏi = β2,i ci x
(1− yi)

ci x+ di (1− x)
− µi yi ∀i = 1, ..., n (7)

Hereafter, we shall focus our analysis on system (6-7) which is our equivalent aggregated system. Observe at first

that this system is mathematically well posed in the biological feasible domain K = {(x, yi)|x ∈ [0; 1]; yi ∈
[0; 1]; ∀i = 1, ..., n}, which is a subset of [0; 1]n+1. This is easily checked since its vector field point inward on the

faces of K.

Proposition 1 : System ( 6-7 ) is cooperative and strongly monotone in K.

The proof of this proposition is straightforward. One just needs to check that the jacobian matrix associated with

system (6-7) is a Metzler and irreducible matrix in K.

4. The basic reproduction ratio R0

The basic reproduction ratio R0 is given by the following theorem.

Theorem 1 : The basic reproduction ratio R0 is given by the following expression :

R2
0 =

n∑

i=1

β1,i β2,i mi ci

γ µi di



Proof : Following the method presented in [4], we classify the (n+ 1) compartments into two classes : infected

and uninfected, and we consider

F = (

n
∑

i=1

β1,i mi di yi
(1− x)

ci x+ di (1− x)
; β2,1 c1 x

(1− y1)

c1 x+ d1 (1− x)
;

β2,2 c2 x
(1− y2)

c2 x+ d2 (1− x)
; · · · ; β2,n cn x

(1− yn)

cn x+ dn (1− x)
)T

Here, F is a (n+ 1)× 1 vector and represents the input rate of new infections in the entire population ( see [4] ).

Furthermore, we define

V = (γ x;µ1 y1;µ2 y2; · · · ;µn yn)
T

Here, V is (n+ 1)× 1 vector and represents the net decreasing rate of infected classes due to migrations ( move-

ments), recovery, and death inside the population (see [4]).

We define X = (x, y1, y2, ..., yn), F = DX F(0; 0), and V = DX V(0; 0). According to ([5], [4]) the matrix

FV −1 is called the next generation matrix, its greatest eigenvalue is the basic reproduction ratio for system (6-7),

i.e R0 = ρ(FV −1), with

FV −1 =













0
β1,1 m1

µ1

. . .
β1,n mn

µn

β2,1 c1
γ d1

0 . . . 0
...

...
. . .

...
β2,n cn
γ dn

0 . . . 0













,

which is a rank 2 and irreducible matrix, it has 2 opposite real eigenvalues. Furthermore,

det(FV −1
− λ In+1) = λn−1

(

λ2
−

n
∑

i=1

β1,i β2,i mi ci

γ µi di

)

.

Hence R0 is the only positive eigenvalue of FV −1 and,

R
2
0 =

n
∑

i=1

β1,i β2,i mi ci

γ µi di

With this explicit formulae of R0, we can point out some remarkable particular cases

Case 1 : If n = 1, R0 is exactly the reproduction number the classical Ross-Macdonald model.

Case 2 : Assume the migration rates are independent of the epidemiological status and that the epidemiological

parameters are the same for all patches. It follows that di = ci and β1,i = β1, β2,i = β2, µi = µ, γi = γ∗.

Therefore R2
0 = β1 β2

γ∗ µ
V
H

where V =
∑n

i=1
Vi is the overall vector (mosquito) population. Once again, as in the

first case, the formulae for R0 looks like that of the classical one patch Ross-Macdonald model if the quantity

m = V
H

stands for the total vector density.



5. Existence of endemic equilibria

5.1. Existence of at least one endemic equilibrium : General case

We use the intermediate value theorem to prove the existence of at least one EE.

Theorem 2 : If R0 > 1, then there exist at least one endemic equilibrium for system (6− 7)

Proof : It’s easy to check (after some substitutions) that (x̄, ȳi) ≫ 0 is an endemic equilibrium of system (6− 7)
if and only if the following equations are satisfied :

ȳi =
β2,i ci x̄

β2,i ci x̄+ µi[ci x̄+ di (1− x̄)]
(8)

F (x̄) =
Q(x̄)

γ + x̄ Q(x̄)
= 1 (9)

where

Q(x̄) =
n
∑

i=1

β1,i β2,i mi ci di

[ci x̄+ di (1− x̄)] [β2,i ci x̄+ µi [ci x̄+ di (1− x̄)]]

If the function F (x̄) denotes the right side of (9), and G(x̄) = F (x̄)− 1, then

G(0) = R2
o − 1 > 0 and limx̄→+∞ G(x̄) = −1 < 0 , if R2

o > 1. Thus, using the intermediate value theorem on

G(x̄), we conclude that there exist at least one solution x̄ > 0 for equation (9), therefore, replacing x̄ in equation

(8), we have ȳi > 0, and the theorem is proven.

5.2. Existence of multiple equilibria : Case of 2 patches (n=2)

Let’s us call the total force of infection of the infected host population, the quantity

λh =
n
∑

i=1

β1,i mi di
yi

ci x+ di (1− x)

then, the existence of endemic solutions problem reduces to the seeking of solutions of : H(λh) = 1, where

H(λh) = (γ + λh)
n
∑

i=1

β1,i β2,i mi ci di

[ci λh + γ di] [µi di γ + λh (µi ci + β2,i ci)]
= 1 (10)

When n = 2, we set : Ai = β1,i β2,i mi ci di ; Bi = µi ci + β2,i ci ; Ki = µi di ci + di Bi

and equation (10) is equivalent to the following polynomial equation

Aλ4
h +B λ3

h + C λ2
h +Dλh + E = 0 (11)

where

A = c1 c2 B1 B2 > 0 ; B = γ (c1 B1 K2 + c2 d2 B1)−A1 c2 B2 −A2 c1 B1

C = γ2
(

µ1 d
2
1 c2 B2 + µ2 d

2
2 c1 B1 +K1 K2

)

− γ [A1 (K2 + c2 B2) +A2 (K1 + c1 B1)]

D = γ3
(

µ1 d
2
1 K2 + µ2 d

2
2 K1

)

− γ2
[

A1

(

K2 + µ2 d
2
2

)

+A2

(

K1 + µ1 d
2
1

)]

E = γ3
(

γ µ1µ2 d
2
1 d

2
2 −A1 µ2 d

2
2 −A2 µ1 d

2
1

)

= γ4 µ1µ2 d
2
1 d

2
2

(

1−R2
0

)



It can be easily seen that A > 0 ( since all the model parameters are non-negative). Further, E > 0 whenever

R2

0
< 1 (R0 < 1). Thus, the number of possible positive real roots of ( 11) depends on the signs of B, C, D. This

can be analyzed using the Descartes Rules of Signs of the polynomial : P (z) = Az4 + B z3 + C z2 +D z + E

given by (11) ( with z = λh). The various possibilities for the positive roots of P (z) are displayed in the following

table . Moreover this table inspired the next theorem :

Cases A B C D E R0 Nb of sign changes Nb of + roots

1 + + + + - R0 > 1 1 1

2 + - - - - R0 > 1 1 1

3 + + - - - R0 > 1 1 1

4 + + + - - R0 > 1 1 1

5 + - + - - R0 > 1 3 1,3

6 + - - + - R0 > 1 3 1,3

7 + + - + - R0 > 1 3 1,3

8 + - + + - R0 > 1 3 1,3

Theorem 3 : The aggregated model (6-7) always has endemic equilibria if R0 > 1 and

(i) has a unique endemic equilibrium if R0 > 1 and cases 1 to 4 are satisfied ;

(ii) could have more than one endemic equilibrium if R0 > 1 and cases 5 to 8 are satisfied

5.3. Numerical simulations and Discussions

Figure 1 illustrate the global stability of the DFE, when parameters are : β1,1 = 0.1, β1,2 = 0.15, β2,1 =
0.08, β2,2 = 0.09, m1 = 0.01, m2 = 0.02, c1 = 0.01, c2 = 0.99, d1 = 0.7, d2 = 0.3, µ1 = 0.2, µ2 =
0.8, γ1 = 0.16, γ2 = 0.08 and R0 = 0.0138548 < 1

We choose the time unit as a day, and consider parameters which are nearest relevant to plasmodium falciparum

malaria and anopheles gambiae. We choose the migration rates mS
1,2,m

S
2,1,m

I
1,2,m

I
2,1 such that

c1 = 0.01, c2 = 0.99; d1 = 0.75; d2 = 0.25; and other parameters to be :

β11 = 0.15;β12 = 0.18;β21 = 0.12;β22 = 0.2;m1 = 0.3;m2 = 0.4;µ1 = 0.2 = µ2; γ1 = 0.01; γ2 = 0.02.

With this set of parameters, we fall in case 5 of the above table , where there are 3 sign changes but one endemic

equilibrium : namely λh = 0.0142304 corresponding to (x̄ = 0.4169421, ȳ1 = 0.0093562, ȳ2 = 0.424965 ) and

R0 = 14.345729, whereas the following set of parameters : β11 = 0.27;β12 = 0.25;β21 = 0.2;β22 = 0.25;m1 =
0.3;m2 = 0.4; c1 = 0.01 ; c2 = 0.99; d1 = 0.75; d2 = 0.25;µ1 = 0.2;µ2 = 0.25; γ1 = 0.01; γ2 = 0.02
remains in case 5 of table1 with 3 endemic equilibria. Namely : λh1

= 0.0202847 ; λh2
= 0.8535569;λh3

=
1.1767786 corresponding to EE1 = (x̄1 = 0.5047866, ȳ11 = 0.0132314, ȳ21 = 0.4448921); EE2 = (x̄2 =
0.9772170, ȳ12 = 0.2667687, ȳ22 = 0.4985325) and EE3 = (x̄3 = 0.9833706, ȳ13 = 0.3059701, ȳ23 =
0.4989347) respectively, with R0 = 19.953769 and EE1 ≪ EE2 ≪ EE3. Linearizing the model around these

equilibria shows that the eigenvalue of the jacobian matrices of the model taken at EE1 and EE3 are all real

and negative , whereas the jacobian matrix taken atEE2 have a positive eigenvalue. Therefore EE1 and EE3

are locally stable and EE2 is unstable. Moreover, one can notice that EE1 is effectively in the interior of K,

and EE2, EE3 are approximately on the face of the boundary of K defined by x = 1. Therefore, simulations

in the case of multiple equilibria, show that the solutions will converge to the interior endemic equilibrium. This

remark is pertinent according to figure 2 . Interchanging d1 and c1 in this last simulation, and keeping the other

parameters unchanged, we fall in case 3 of the above table , where there is only one sign change with one endemic

equilibrium. Recall, here R0 = 488.0202 and λh = 0.0334814. So the change in migration rates can deeply

influence the dynamic behavior of the model. For instance the number of endemic equilibria can move from 3 to 1
and vice-versa according to migration rates changes.

Figure 1 conjecture the global stability of the DFE and therefore rule out the possibility of having other endemic



equilibria than the DFE when R0 < 1. We did not succeed in proven this analytically but we think that the theory

of "convergence almost everywhere" of M. W. Hirsch will be applied conveniently in this case since the model is

monotone.
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