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RÉSUMÉE. On considère un modèle SIR avec différentes mortalités et à population constante. La

stabilité globale des équilibres est étudiée en utilisant les méthodes de Lyapunov.

ABSTRACT. We consider a SIR model with differential mortality and constant population. Global

stability of equilibrium is etablished by using Lyapunov’s method.
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1. Introduction

The SIR model is a classical model in mathematical epidemiology. Particularly Kermack

and McKendrick [8 ] use a SIR model to prouve the existence of threshold. The model

of Kermack and McKendrick is without demography, i.e. without vital dynamics. The

classic SIR models are very important as conceptual models (similar to predator-prey

and competing species models in ecology). The SIR epidemic modeling yields the useful

concept of the threshold.

When a vital dynamic is introduced the asymptotic behavior changes. When the death

rates are equal in each compartments S,I and R, and equal to the birth rate, the global

stability has been solved in [ 6, 5 ]. Actually, the total population is constant, hence the

system reduces to a two dimensional system. Then using phase plane methods (Poincaré-

Birkhoff) and Liapunov functions the global stability is obtained.

Models with a variable total population size are often more difficult to analyze ma-

thematically because the population size is an additional variable which is governed by a

differential equation

The global stabilty using Lyapunov functions of SIR model with a total constant po-

pulation is proved in [10 ]. However in this model the death rates of S and I are equal

and the death rate of the removed compartment is adjusted relatively to the death rate of

S and the constant birth rate. This adjustment is just done to have a constant total popu-

lation. This is a little bit artificial. The model with constant population simplifies in two

important ways :

– The mass action law
SI

N
reduces to a bilinear law β̃S I

– The system is a two-dimensional system.

In this paper we propose a more realistic model, with constant population. We suppose,

which is more or less observable, that the natality compensates for the mortality. Our

model can deal with different death rates, and particularly with a over-mortality from the

disease.

We denote R0 the basic reproduction number. It is defined as the expected number of

new cases of infection caused by a typical infected in a population susceptible [3 , 16].

We prove in this paper the global stability of disease free equilibrium (DFE) if R0 ≤ 1
and that there exists a unique endemic equilibrium (EE) if R0 > 1, which is globally

asymptotically stable on the domain minus the stable manifold of the DFE.

The stability analysis of classical SIR model is well know since 1976 [5 , 7 ]. The

reason was that study of stability for these models reduce to the study of 2-dimentsionnal

systems, hence phase methods can be used : Poincaré-Bendixon theorem. Periodic orbits

are ruled out using Dulac criteria or a condition of Busenberg and Van Den Driessche [ 2].

In the recent litterature, the Lyapunov method is successfully used to prove the glo-

bal stability of endemic equilibrium. This method consists to find one function, called

Lyapunov function and usualy denoted by V , positive definite and its derivative along tra-

jectories is negative definite. If the derivative V̇ is only negative , the LaSalle’s invariance

principle extend the Lyapunov method in particular cases. This Lyapunov function is very

difficult to exhibit. However, the class of Lyapunov function

V =

n∑

i=1

ai (xi − x̄i log xi)



is used. This function has a long history of application to Lotka-Voltera models and was
discovered by Voltera himself, althrough he did not use the vocabulary and the theory of
Lyapunov functions. In 2002, Korobeinikov and Wake use this type of function to prove
the global stability for SIR, SIRS and SIS models [10 ] and in 2004, for SEIR and
SEIS model [9 ] and give a simply proof of the result of Li and Muldowney [15 ].

We give a brief outline of the paper. In section 2, we formulate the model and study
the global stability of the DFE if R0 ≤ 1. In section 3, we study the global stability of
endemic equilibrium if R0 > 1. In finally we conclude in section 4.

2. Model formulation

We consider a population N divided into classes of susceptible, infectious and remo-
ved individuals, with numbers at time t denoted by S(t), I(t) and R(t) respectively, that
is N = S(t) + I(t) + R(t). We assume that there is no vertical transmission, then all
offsprings are susceptibles. We assume that the natality Λ compensates for the deaths.
Then Λ = µ1S + µ2I + µ3R. The parameter γ is the rate of recovery. Note that, in our
model the disease confers a permanent immunity. The parameter β is the effective per
capita contact rate of infective individuals. We modelize the contact by the classical law
of mass action mass. We have the following flow graph :



The dynamic of this model is given by the following system :







Ṡ = Λ − β S I
N − µ1 S

İ = β S I
N − µ2I − γ I

Ṙ = γ I − µ3 R

(1)

Which reduces to






Ṡ = −β S I
N + µ2 I + µ3 R

İ = β S I
N − µ2 I − γ I

Ṙ = γ I − µ3 R

(2)

The population size is constant, so that S + I + R = N , then we can omit the equation

of removed population. We obtain the two-dimensional system :
{

Ṡ = −β SI
N + µ2I + µ3 (N − S − I)

İ = β SI
N − (µ2 + γ) I

For simplicity we can consider the prevalence, i.e. the proportions.

If we denote S
N , I

N , the susceptible and infectious fractions, again by S and I . Then

the system (2) is reduced to

{

Ṡ = µ3 + (µ2 − µ3)I − µ3S − βSI

İ = βSI − (µ2 + γ) I
(3)

We have 0 ≤ S, 0 ≤ I and S + I ≤ 1. The biological domain of this two-dimensional

system is the standard simplex.

The set Ω = {(S, I) : S ≥ 0; I ≥ 0;S + I ≤ 1} is a positively invariant compact set for

(3). The system is well posed.

The basic reproduction ratio is given by

R0 =
β

µ2 + γ
.

2.1. Stability of DFE

System (3) has a disease free equilibrium state, which is given by (S∗, 0) = (1, 0) .

Theorem 2.1 If R0 ≤ 1 then the DFE is globally asymptotically stable on Ω.

Proof :

We consider the Lyapunov-LaSalle function V (S, I) = I . We have :

V̇ = İ

= βSI − (µ2 + γ) I

= I (R0S − 1) (µ2 + γ)

≤ 0

Furthermore V̇ = 0 if I = 0 or S = S∗ and R0 = 1. Hence the largest invariant set

contained in the set L =
{

(S, I) ∈ Ω / V̇ (S, I) = 0
}

is reduced to the DFE. Since we

are in a compact positively invariant set, by the LaSalle’s Invariance Principle [12 , 1] ,

the DFE is globaly asymtotically stable in Ω.



Remark 2.1 Unlike Lyapunov’s theorems, LaSalle’s principle does not require the func-
tion V (x) to be positive definite . If the largest invariant set M , contained in the set E
of points where V̇ vanishes, is reduced to the equilibrium point, i.e. if M = {x0}, the
LaSalle’s principle allows to conlude that the equilibrium is attractive. But a drawback
of Lasalle’s principle, when significant, is that it proves only the attractivity of the equili-
brium point. It is well known that in the nonlinear case attractivity does not imply stability.
But when the function V is not positive definite, Lyapunov stability must be proven. This
is why LaSalle’s principle is often misquoted. Some additional condition enables, with
LaSalle’s principle, to ascertain asymptotic stability. To obtain stability from LaSalle’s
principle some additionnal work is needed. The most complete results, in the direction of
Lasalle’s principle to prove asymptotic stability, have been obtained by LaSalle himself
(LaSalle :[13 ], in 1968, completed in 1976 [14 ] .)

3. Global Stability of endemic equilibrium

An equilibrium for system (3), diffrent from the DFE, is given by
(
S̄, Ī

)
, where

S̄ =
µ2 + γ

β
=

1

R0

and Ī =
µ3

µ3 + γ

(
1−

1

R0

)

This equilibrium is in the simplex, i.e., 0 ≤ S̄, 0 ≤ Ī and S̄ + Ī ≤ 1 iff R0 > 1.

Clearly 0 ≤ Ī is equivalent to R0 ≥ 1. Now we can write

S̄ + Ī =

γ
R0

+ µ3

γ + µ3

When R0 = 1 this equilibrium coincide with the DFE. Then there is an unique equili-

brium in the interior of the simplex iff R0 > 1.

Theorem 3.1 If R0 > 1, the DFE is unstable and there exists an unique endemic equili-
brium (S̄, Ī) and this endemic equilibrium is globally asymptotically stable on the domain
Ω \ [0, 1]× {0}. In other words on the simplex minus the stable manifold of the DFE

Proof :

When R0 > 1 the unstability of the DFE comes from [3 ].

Let Ω1 the set defined by Ω1 =

{
(S, I)/ S ≥

µ2 − µ3

β
, I ≥ 0, S + I ≤ 1

}
. The set

Ω1 is a compact positively invariant. We Consider on
◦

Ω1 the Lyapunov function defined

by

V (S, I) =
(
S − S̄

)
−

µ3 + γ
β

log
−µ2 + µ3 + βS
−µ2 + µ3 + βS̄

+
(
I − Ī

)
− Ī log

I
Ī



It is easy to verifiy that V is definite positive, that is V (S, I) ≥ 0 and V (S̄, Ī) = 0 if and

only if (S, I) = (S̄, Ī). His derivative along trajectories of (3) is given by :

V̇ (S, I) = Ṡ − (µ3 + γ)
µ3 + (µ2 − µ3)I − µ3S − βSI

−µ2 + µ3 + βS
+

βSI − (µ2 + γ) I − Ī (βS − (µ2 + γ))

= Ṡ − (µ3 + γ)
(µ3 − µ3S)

−µ2 + µ3 + βS
+ (µ3 + γ) I +

βSI − (µ2 + γ) I − Ī (βS − (µ2 + γ))

= µ3 (1 − S) − (µ3 + γ)
(µ3 − µ3S)

−µ2 + µ3 + βS
− Ī (βS − (µ2 + γ))

= µ3 (1 − S)

[
1 −

µ3 + γ

−µ2 + µ3 + βS

]
− Ī (βS − (µ2 + γ))

= µ3 (1 − S)

(
−βS̄ + βS

−µ2 + µ3 + βS

)
−

µ3

µ3 + γ

(
1 − S̄

) (
βS − βS̄

)

= −µ3β
(
S̄ − S

) [
1 − S

−µ2 + µ3 + βS
−

1 − S̄

µ3 + γ

]

= −µ3β
(
S̄ − S

) [
1 − S

−µ2 + µ3 + βS
−

1 − S̄

−µ2 + µ3 + βS̄

]

= −
βµ3

µ3 + γ

[
−µ2 + β + µ3

−µ2 + β + βS

] (
S − S̄

)2

≤ 0

Then we conclude V̇ is semi-definite positive. Then the endemic equilibrium is stable

by Lyapunov theorems. We prove the attractivity of endemic equilibrium using Lasalle’s

principle.

The set on which V̇ = 0 is given by E =
{
(S, I) ∈

◦

Ω1 / S = S̄
}
. Then on this set, we

have Ṡ = µ3+(µ2 −µ3)I−µ3S−βS̄I = 0, then I =
µ3 − µ3S̄

βS − µ2 + µ3
= Ī . Furthermore

the largest invariant set contained in the set
{
(S, I) ∈

◦

Ω1 / V̇ (S, I) = 0
}

is reduced to

the endemic equilibrium. Hence (S̄, Ī) is attractive. Then EE is GAS on
◦

Ω1.

If S ≤
µ2 − µ3

β
, we have :

Ṡ = µ3 + (µ2 − µ3)I − µ3S − βSI

= µ3 (1 − S) + (µ2 − µ3 − βS) I

> 0

Then Ṡ > 0. Furthermore all trajectories in
◦

Ω \
◦

Ω1 enter in
◦

Ω1. Then the set
◦

Ω1 is

absorbant. Hence the EE is GAS on
◦

Ω .



In the boundary S = 0 et S+I = 1, the vector field is strictly pointing inside Ω. Only

the S-axis is invariant. The endemic equilibrium is GAS on Ω\ {(S, I) : I = 0; 0 ≤ S ≤ 1}.

This end the proof.

4. Conclusion

In this contribution, we have proved the global stability of SIR model with differential

mortality and constante population by Lyapunov methods. Our results encompass and

improve the results of [10 ].
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