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RÉSUMÉ. Le virus de l’immunodéficience humaine (VIH) est la principale cause de décès chez les

personnes infectés par le virus de l’hépatite B (HBV). L’étude de la dynamique commune du VIH et

HBV présente un défis mathématique majeur, en dépit du fait qu’ils ont le même mode de transmis-

sion. Un modèle déterministe pour la co-infection du HBV et du VIH au sein d’une population est

présenté et rigoureusement analysé. Nous calculons le nombre de reproduction de base (R0), le

point d’équilibre sans maladie, les points d’équilibre frontières, que nous définissons comme l’exis-

tence d’une seule maladie en l’absence de l’autre maladie, et le point d’équilibre de co-infection pour

des conditions spécifiques. Nous déterminons les critères de stabilité pour le point d’équilibre sans

maladie et les points d’équilibre frontières. Les simulation numériques sont présentées pour illustrer

les résultats analytiques.

ABSTRACT. The human immunodeficiency virus (HIV) is the leading cause of death among individu-

als infected with the Hepatitis B virus (HBV). The study of the joint dynamics of HIV and HBV present

formidable mathematical challenges in spite the fact that they share similar routes of transmission. A

deterministic model for the co-interaction of HBV and HIV in a community is presented and rigorously

analyzed. We calculate the basic reproduction number (R0), the disease-free equilibrium, boundary

equilibria, which we define as the existence of one disease along with the complete eradication of the

other disease, and the co-infection equilibrium for specific conditions. We determine stability criteria

for the disease-free and boundary equilibria. Numerical simulations have been presented to illustrate

analytical results.
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1. Introduction

Due to shared models of transmission, co-infection with hepatitis B virus (HBV) and

HIV is common. With a reduction in AIDS-related deaths due to highly active antiretrovi-

ral therapy (HAART), liver disease has emerged as an important cause of death in patients

with HBV-HIV co-infection. Hepatitis B is a dynamic disease and an understanding of its

virology and natural history is imperative if complications are to be reduced and disease

progression limited. The management of HIV-HBV co-infection is complicated by the use

of drugs with activity against both viruses, the risk of flares and hepatic decompensation

with immune reconstitution, and the increasing prevalence of antiviral resistance.

More than 350 million people are infected with HBV, with 75% of the world’s HBV

carriers residing in Asia [1-3]. Forty million people are infected with HIV worldwide.

Due to shared modes of transmission, co-infection is common and an estimated 4 million

people worldwide are co-infected with HBV-HIV. The prevalence of HBV in HIV infected

individuals varies with the population studied. In the United States, up to 10% of all

HIV-infected individuals have HBV co-infection [3]. Several studies support an increased

prevalence of HBV in HIV-infected populations of sub-Saharan Africa, with more than

80% of HIV-positive individuals in some of those countries carrying serum markers for

HBV [1]. People co-infected with both hepatitis B and HIV are 14 to 17 times more

likely to die than those with hepatitis B alone. Those co-infected with HIV and HBV also

face accelerated liver scarring or cirrhosis. To make matters worse, some medicines used

to treat HIV are toxic to the liver, which may already be damaged from the hepatitis B

infection [4].

However, the study of infectious disease co-epidemics is critical to understanding how

the diseases are related, and how prevention and treatment efforts can be most effective.

Mathematical models can provide insight into the complicated infection dynamics, and

into effective control measures. Most mathematical epidemic models evaluate a single

disease [5,6], although a growing number of studies have considered co-epidemics [7-9].

Mathematical studies of co-infection models are not very common. On the other hand, the

huge public health burden inflicted by HIV and HBV necessitates the use of mathematical

modeling to gain insights into their transmission dynamics and to determine effective

control strategies.

In this study, we formulate and analyze a realistic mathematical model for HBV-HIV

co-infection, which incorporates the key epidemiological and biological features of each

of the two diseases. The main contribution of this study is in carrying out a detailed

qualitative analysis of the resulting model. It is our view that this study represents the

very first modelling work that provides an in-depth analysis of the qualitative dynamics

of HBV-HIV co-infection.

2. Model construction

The formulation of this co-infection closely follows the epidemiological dynamics of

the two diseases.



2.1. Basic framework

The model sub-divides the total sexually-active population at time t denoted by N ,

into various mutually-exclusive compartments depending on their disease status : Suscep-

tible individuals to both diseases (S(t)), infected individuals in the asymptomatic stage

of HIV infection (H1(t)), HIV-infected individuals with clinical symptoms of AIDS

(H2(t)), dually-infected individuals with HBV acute infection, in the asymptomatic stage

of HIV infection (H1I(t)), dually-infected individuals with HBV acute infection, dis-

playing symptoms of AIDS (H2I(t)), dually-infected individuals with HBV chronic in-

fection, in the asymptomatic stage of HIV infection (H1C(t)), dually-infected indivi-

duals with HBV chronic infection, displaying symptoms of AIDS (H2C(t)), HBV re-

covered individuals with protective immunity in the asymptomatic stage of HIV infection

(H1R(t)), HBV recovered individuals with protective immunity displaying symptoms of

AIDS (H2R(t)), HBV vaccinated individuals (V (t)), individuals with HBV acute infec-

tion (IB(t)), HBV chronic carriers (CB(t)) and HBV recovered with protective immunity

(RB(t)).

The compartmental diagram in Fig. 1 illustrates the flow of individuals as they face

the possibility of acquiring specific-disease infections or even co-infections.

Figure 1. Flowchart of the transmission dynamics of the co-infection HIV/HBV.

The force of infection associated with HBV infection is given by

λB = βB

IB + η1(H1I + η1hH2I) + η(CB + η1cH1C + η2cH2C)

N
, [1]



where βB is the effective contact rate for HBV transmission and the modification para-

meters η1, η1h, η, η1c and η2c model the relative infectiousness of individuals in the CB

H1I , H2I , H1C and H2C classes.

Susceptible and HBV vaccinated individuals acquire HIV infection following contact

with people infected with HIV (that is, those in H1, H2 H1I , H2I , H1C , H2C , H1R and

H2R classes) at rate λH defined as follows :

λH = βH

H1 + εH2 + ε1(H1I + ε1hH2I) + ε2(H1C + ε2hH2C) + ε3(H1R + ε3hH2R)

N
,

[2]

where βH is the effective contact rate for HIV infection (contact sufficient to result in HIV

infection). Further, the modification parameters ε, ε1, ε1h, ε2, ε2h, ε3 and ε3h account for

the relative infectiousness of individuals in the H2 H1I , H2I , H1C , H2C , H1R and H2R

classes.

2.2. The model

Putting the above formulations and assumptions together gives the following system

of differential equations :
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Ṡ = Λ + µω(1− vCB − v1H1C − v2H2C)− (1− δ)(λH + λB)S − (δ + µ0)S,

V̇ = µ(1− ω) + δS − (λH + πBλB)V − µ0V,

Ḣ1 = [V + (1− δ)S]λH − ϕ1(1− α)λBH1 − (µ0 + α)H1,

Ḣ2 = αH1 − ϕ2λBH2 − (µ0 + dH)H2,

Ḣ1I = ϕ1(1− α)λBH1 + ψ1(1− γ1)λHIB − [µ0 + φ1(1− α1)]H1I ,

Ḣ2I = ϕ2λBH2 + α1H1I − (µ0 + d1H + φ2)H2I ,

Ḣ1C = µωv1H1C + q1φ1(1− α1)H1I

+ψ2(1− γ2)λHCB − [µ0 + d4H + α2 + θ1(1− α2)]H1C ,

Ḣ2C = µωv2H2C + q2φ2H2I + α2H1C − (µ0 + d2H + θ2)H2C ,

Ḣ1R = φ1(1− α1)(1− q1)H1I + θ1(1− α2)H1C + ψ3λHRB − (µ0 + α3)H1R,

Ḣ2R = φ2(1− q2)H2I + θ2H2C + α3H1R − (µ0 + d3H)H2R,

İB = [πBV + (1− δ)S]λB − ψ1(1− γ1)λHIB − (µ0 + γ1)IB ,

ĊB = µωvCB + qγ1IB − ψ2(1− γ2)λHCB − (µ0 + dB + γ2)CB ,

ṘB = γ1(1− q)IB + γ2CB − ψ3λHRB − µ0RB ,
[3]



where Λ is the recruitment rate of susceptible individuals into the population ; πB is the

rate of waning vaccine-induced immunity ; ϕ1 and ϕ2 are the probabilities of acquiring

HBV infection of individuals in the H1 and H2 classes, respectively ; ψ1, ψ2 and ψ3

are respectively, the probabilities of acquiring HIV of individuals in the IB , CB and RB

classes ; µ is the birth rate in the population ; ω is the proportion of births without suc-

cessful vaccination ; v, v1 and v2 are proportions of perinatally infected born by carriers

mothers in the CB , H1C and H2C classes, respectively ; δ is the vaccination rate ; γ1,

φ1 and φ2 are respectively, the rates moving from IB , H1I and H2I classes to CB , H1C

and H2C classes ; q, q1, and q2 are respectively, the average probability that an individual

in the IB , H1I and H2I classes fail to clear an acute state and develops a carrier state

(CB , H1C and H2C), respectively ; γ2, θ1 and θ2 are respectively, rates moving from CB ,

H1C and H2C classes to RB , H1R and H2R classes ; dB is the HBV induced death rate

of individuals in the HBV chronic carriers class CB ; dH , d1H , d2H , d3H and d4H are

respectively, the HIV induced death rate of individuals in the H2, H1I , H2I , H1C , H2C

and H2R classes.

We show that all feasible solutions of components of system (3) enters the region :

Ω =

{

(S, V, H1,H2,H1I ,H2I ,H1C ,H2C ,H1R,H2R, IB , CB , RB) ∈ R13

≥0
, N(t) ≤

Λ + µ

µ0

}

.

[4]

3. Analysis of the model

3.1. Local stability of the disease-free equilibrium (DFE)

The HBV-HIV model (3) has a DFE given by

Q0 =

(

Λ + µω

µ0 + δ
,

δ(µ + Λ) + µµ0(1 − ω)

µ0(µ0 + δ)
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

.

The local stability of the DFE of the HBV-HIV model is determined by its basic re-

production number R0, which is computed using the next generation operator method

proposed by van den Driessche and Watmough [10]. The associated reproduction number

for the HBV-HIV model denoted by R0 is given by

R0 = max{RB

0
,RH

B }, [5]

where

RB
0

=
βB(A + ηqγ1)[πB [δ(µ + Λ) + µµ0(1 − ω)] + µ0(1 − δ)(Λ + µω)]

A(µ0 + δ)(µ0 + γ1)(Λ + µ)
,

RH
0

=
βH(µ0 + dH + ε2α)

(µ0 + α)(µ0 + dH)
and RH

B = RH

0

(

1 −
µ0δ(Λ + µω)

(Λ + µ)(µ0 + δ)

)

,

[6]

with A = µ0 + dB + γ2 − µωv.

A threshold condition for endemicity is given by R0 = 1 : the disease dies out if

R0 < 1, and becomes endemic if R0 > 1. Then, we can claim the following result.



Corollary 1 : The DFE Q0 of system (3) is LAS if R0 < 1 and unstable if R0 > 1.

3.2. Existence and stability of boundary equilibria

System (3) has four possible nonnegative boundary equilibria in Ω : the disease-free

equilibrium (DFE) Q0, the HBV-only (HIV-free) equilibrium Q∗

B
, the HIV-only (HBV-

free) equilibrium Q∗

H
and the HBV/HIV equilibrium QH

B
.

At Q∗

H
, the components are VB = IB = CB = H1I = H2I = H1C = H2C =

H1R = H2R = 0,

S∗

H
=

Λ

µ0 + λ∗
H

, H∗

1H =
Λλ∗

H

(µ0 + α)(µ0 + λ∗
H

)
, H∗

2H =
αΛλ∗

H

(µ0 + α)(µ0 + dH)(µ0 + λ∗
H

)
,

λ∗
H

=
(µ0 + α)(µ0 + dH)(RH

0
− 1)

µ0 + α + dH

.

At Q∗

B
, the components are H1 = H2 = H1I = H2I = H1C = H2C = H1R =

H2R = 0 and
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I∗
B

=
A(Λ + µ)λ∗

B

βBµ0(A + ηqγ1) + dBqγ1λ
∗

B

, C∗

B =
qγ1(Λ + µ)λ∗

B

βBµ0(A + ηqγ1) + dBqγ1λ
∗

B

,

S∗

B
=

1

(1 − δ)λ∗
B

+ δ + µ0

[

Λ + µω

(

1 −
qγ1v(Λ + µ)λ∗

B

βBµ0(A + ηqγ1) + dBqγ1λ
∗

B

)]

,

V ∗

B
=

1

πBλ∗
B

+ µ0

[µ(1 − ω)

+
δ

(1 − δ)λ∗
B

+ δ + µ0

[

Λ + µω

(

1 −
qγ1v(Λ + µ)λ∗

B

βBµ0(A + ηqγ1) + dBqγ1λ
∗

B

)]]

,

where λ∗
B

=
βB(I∗

B
+ ηC∗

B
)

N∗

B

(with N∗

B
= S∗

B
+ V ∗

B
+ I∗

B
+ C∗

B
+ R∗

B
) is the force of

infection at the steady state Q∗

B
which satisfies the following quadratic equation :

b2(λ
∗

B)2 + b1λ
∗

B + b0 = 0, [7]

where

b2 = (1 − δ)(Λ + µ)[πB [A(µ0 + γ1) + dBqγ1] + µωvqγ1(1 − δ)],

b1 = −πBµ(1 − ω)[βBµ0(1 − δ)(A + ηqγ1) + dBqγ1(µ0 + δ)] − dBqγ1πBδ(Λ + µω)

+ πBδµvqγ1(Λ + µ) − (1 − δ)(Λ + µω)[πBβBµ0(A + ηqγ1) + µ0dBqγ1]

+ µωvqγ1(1 − δ)(µ0 + δ)(Λ + µ) + A(µ0 + γ1)(Λ + µ)[πB(µ0 + δ) + µ0(1 − δ)],

b0 = Aµ0(µ0 + γ1)(µ0 + δ)(Λ + µ)(1 −R
B
0

).

The stability of these boundary equilibria are described as follows. Two coexistence

thresholds must be calculated : the first separates the region where only HBV persists from



the region of coexistence ; the second marks the shift from coexistence to persistence of

HIV alone.

In order to derive an expression for the region of stability of the boundary equilibrium

Q∗

H
, we measure the capacity of HBV to invade and persist in a population where HIV

is at equilibrium. Applying the methods in van den Driessche [10], we find the basic

reproduction ratio of the HBV in a population where HIV are fixed :

R
B

0
(Q∗

H
) =

βB(1 − δ)S∗

H
[A + ψ2(1 − γ2)λ

∗

H
+ ηqγ1]

N∗

H
[ψ1(1 − γ1)λ∗H + µ0 + γ1][A + ψ2(1 − γ2)λ∗H ]

. [8]

This formalism permits the derivation of a threshold condition for coexistence, now equi-

valent to a threshold condition for HBV endemicity in a population where HIV is at equi-

librium, RB
0

(Q∗

H
) = 1 : only HIV persists for RB

0
(Q∗

H
) < 1, while for RB

0
(Q∗

H
) > 1

HBV can invade a population where HIV state are fixed, that is, to say coexistence is

possible.

Now, let us compute the region of stability of the boundary equilibrium Q∗

B
. We use

the same reasoning as before. We consider HIV as the phenotype invading a population

where HBV is already endemic. Applying the methods in [10] once again, we find the

basic reproduction ratio of the HIV in a population where HBV is fixed :

R
H

B
(Q∗

B
) =

βH [πBVB + (1 − δ)SB ][ϕ2λ
∗

B
+ µ0 + dH + εα]

N∗

B
[ϕ1(1 − α)λ∗

B
+ µ0 + α](ϕ2λ∗B + µ0 + dH)

. [9]

Then, HIV can invade a population where HBV is fixed when R
H

B
(QB) > 1.

To illustrate the theoretical results contained in this paper, the model (3) is simulated

using the following set of parameters : Λ = 500,πB = 0.1, δ = 0.75, η = 0.16, η1 = 1.1,

η1h = 1.2, η1c = 1.3, η2c = 1.4, ε = 1.1, ε1 = 1.2, ε1h = 1.25, ε2 = 1.5, ε2h = 1.55,

ε3 = 1.3, ε3h = 1.35, ϕ1 = 0.3, ϕ2 = 0.5, ψ1 = 0.4, ψ2 = 0.5, ψ3 = 0.1, µ0 = 0.019,

µ = 0.012, ω = 0.35, γ1 = 4, γ2 = 0.025, v = 0.11, v1 = 0.12, v2 = 0.13, φ1 = 2,

φ2 = 3, q = 0.885, q1 = 0.9, q2 = 0.95, θ1 = 0.015, θ2 = 0.01, α = 1/33, α1 = 0.04,

α2 = 0.05, α3 = 0.06, dH = 0.01, d1H = 0.03, d2H = 0.05, d3H = 0.02, d4H = 0.06
and dB = 0.002.

Figure 2 examines changes in infection levels over time. It plots the time series of

λB/βB (fraction of acute and chronic HBV infection) and λH/βH (fraction of HIV in-

fection). The top two figures are for the case when R
H

B
= 1.2908 > 1 (βH = 0.03),

R
B
0

(Q∗

H
) = 0.8545 < 1 (βB = 0.4) in (a) and R

B
0

(Q∗

H
) = 2.5634 > 1 (βB = 1.2)

in (b). It demonstrates that for RH

B
> 1, the HBV free equilibrium Q∗

H
is stable when

R
B
0

(Q∗

H
) < 1 and HIV and HBV coexist when R

B
0

(Q∗

H
) > 1. The bottom two fi-

gures are for the case when R
B
0

= 1.4596 > 1 (βB = 1.2), RB

H
(Q∗

B
) = 0.4247 < 1

(βH = 0.02) in (c) and R
B

H
(Q∗

B
) = 1.0619 > 1 (βH = 0.1) in (d). It illustrates that

for R
B
0

> 1, the HIV free equilibrium Q∗

B
only persists when R

B

H
(Q∗

B
) > 1, while

when R
B

H
(Q∗

B
) > 1, HIV and HBV persist. Also, it clearly appears that the increased of

R
B

H
(Q∗

B
) generated damped oscillations in the system.
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