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ABSTRACT. Real-time operating systems (RTOS) play a central role in the correct and efficient
management of computing resources for applications with stringent real-time constraints. As a conse-
quence, addressing them in an adequate way during the development of real-time systems is highly
important. This paper proposes a high-level approach to the design of such systems. The rationale
of this approach consists in using the synchronous approach to define a general modeling framework
making possible RTOS-based design according to three major standards: APEX, Posix and OSEK,
respectively dedicated to avionic, general-purpose and automotive applications. The suggested solu-
tion specifies generic models of RTOS services and executive entities, covering the standards. The
main advantage of these models is that they favor a rapid virtual prototyping of real-time systems, with
access to formal validation techniques.

RESUME. Les systémes d’exploitation temps réel (acronyme anglais, RTOS) jouent un réle cen-
tral dans la gestion correcte et efficace des ressources d’exécution pour les applications avec des
contraintes temps réel. Par conséquent, il est trés important de savoir les aborder de fagcon adéquate
lors du développement des systéemes temps réel. Ce papier propose une approche a haut niveau pour
la conception de tels systéemes. Lidée de cette approche consiste a utiliser 'approche synchrone pour
définir un cadre général de modélisation rendant possible la conception orientée RTOS, selon trois
standards : APEX, Posix et OSEK, respectivement dédiés aux applications avioniques, générales
et automobiles. La solution suggérée spécifie des modeles génériques de services d'un RTOS et
aussi d’entités d’exécution couvrant les standards. Le principal avantage de ces modéles est qu’ils
favorisent un prototypage virtuel rapide de systémes temps réel, avec un acces a des techniques de
validation formelle.
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2. The current paper partly relies on earlier studies funded by the European project IST
SafeAir (Advanced Design Tools for Aircraft Systems and Airborne Software) - Convention n°
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1. Introduction

A real-time system is a computer system expected to execute as fast as possible to
produce a response upon its environment’s requests within a bounded delay. The environ-
ment often includes a physical process, e.g., a nuclear power plant, sending requests to
its associated controlling computer system via sensors. In such a situation, the system is
particularly required to satisfy both response-time and functional correctness constraints.
Real-time operating systems (RTOS) are key components in the design of real-time sys-
tems since they allow applications to get access to computer resources. For modern appli-
cations, which are increasingly complex and performance-demanding, it is important to
adequately deal with issues such as concurrency, memory or time management. RTOS of-
fer concurrent programming paradigms including executable entities running in common
or separate address spaces. They also propose services for scheduling, synchronization,
communication, time and memory management. The reliable and efficient design of real-
time systems taking into account all these aspects has become more challenging than ever.

Among promising solutions to the design of real-time systems, we mention model-
based approaches, which make it possible to address design issues at different abstraction
levels, thus enabling earlier and flexible design decisions. These approaches also facilitate
the design by favoring genericity, modularity and reusability. They are often associated
with formal techniques for correctness analysis and predictability. They are now widely
adopted in industry for the development of safety-critical real-time systems.

Our proposition: Synchronous models of RTOS components. This paper proposes
an integration of different RTOS features in the formal modeling framework of the syn-
chronous language Signal [7, 2], according to three standards: APEX [1], Posix [10]
and OSEK [9], respectively dedicated
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tive applications. This proposition is built S8 . .
upon a previous work on APEX model- < } e 4

ing [3]. In Section 2, we discuss the three

standards and compare them. In Section 3, e Generic RTOS services
the modeling of our generic RTOS com-
ponents in Signal is shown. Such compo-
nents are usable in the top two layers in
Figure 1: application level and API. They
consist of executive entities and services
for scheduling, synchronization, commu- e lplationm
nication, time and memory management.
Section 4 exposes all formal analysis fa-
cilities applicable to the resulting models. The goal is to enable a rapid virtual prototyping
permitting earlier design space exploration. Finally, Section 5 gives concluding remarks.
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Figure 1. Considered system architecture.

2. APEX, Posix and OSEK standards

2.1. Overview

APEX. The APEX (APplication EXecutive) standard specified in the ARINC 653
series [1] defines an RTOS interface for applications to execute on integrated modular
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avionics (IMA) architectures. IMA is an alternative solution to the high cost of federated
architectures in which system functions are separately executed on their own computer
system. IMA allows several functions with different criticality to execute on the same
computer. It ensures a safe allocation of shared resources without fault propagation. This
is achieved via a partitioning of resources w.r.t. available time and memory budget. A par-
tition is a logical allocation unit resulting from a functional decomposition of the system.
It is allocated a processor for a fixed time window within a global time frame maintained
by an operating system (OS). Partitions communicate asynchronously via ports and chan-
nels. They are composed of processes running concurrently to fulfill the functions asso-
ciated with their partition. Each process is uniquely characterized by information, e.g.,
period, priority, or deadline time, useful to the partition-level OS, which is responsible
for the correct execution of processes within a partition. The scheduling policy for pro-
cesses is priority preemptive. Communications between processes are achieved by three
basic mechanisms: buffers, events and blackboards, while semaphores enable synchro-
nizations. APEX defines services for communication between partitions and processes,
synchronization of processes, and management of partitions, process, time and memory.

Posix. The real-time extension of Posix (Portable operating system interface), re-
ferred to as RT-Posix [10] defines a number of profiles that enhance the basic standard
with capabilities for the development of real-time and embedded applications. The pro-
files propose several RTOS services among which are scheduling services. The executive
entities are processes and threads. A process is composed of threads and plays a similar
role as an APEX partition w.r.r. APEX processes. Different scheduling strategies can be
envisaged: sched_fifo assumes a First In First Out policy, sched_rr considers a Round
Robin policy and sched_other assumes other implementation-specific policies. Threads
are schedulable from different perspectives. At the global level, they are managed irre-
spective of their membership to processes whose scheduling parameters are ignored. At
the local level, the scheduling of threads is restricted to the process they belong to. The
last perspective combines the previous two. RT-Posix defines services for synchronization
between executive entities, e.g. by using semaphores; resource access via mutual exclu-
sion; communications through message queues; and time management.

OSEK. The OSEK (Offene Systeme und deren Schnittstellen fiir die Elektronik im
Kraftfahrzeug) standard [9] is dedicated to embedded electronics in the automotive do-
main. Similarly to APEX and Posix, it specifies a set of RTOS services. Two kinds of ex-
ecutive entities are distinguished: interrupts and tasks. Their scheduling is based on static
priorities. Interrupts have higher priorities than tasks. They are managed by the hard-
ware. Thus, their priorities strongly depend on the considered implementation platform.
Tasks are handled by considering a scheduler as for APEX and Posix executive entities.
A very popular OSEK-compliant RTOS is VDX (Vehicle Distributed eXecutive), which
implements the services specified by the standard for multi-task applications. During the
development of an application, all the objects must be statically allocated. OSEKtime is
another variant of the OSEK standard dedicated to time-triggered execution.

2.2. Discussion and comparison

The services specified in the different standards aim at the same RTOS functionali-
ties: entity scheduling, synchronization, communication, time and memory management.
In essence, they are actually very similar. Of course, there could be some minor differ-
ences, going from interface specifications to implementation choices. Our solution pro-
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poses generic service models that can be easily instantiated according to implementations
of mentioned standards (their minor differences are considered via a black-box vision).

On the other hand, we observe that each standard defines its proper notion of execu-
tive entity. However, a strong analogy exists between the visions adopted by APEX and
Posix. OSEK considers two entity models without any containment hierarchy contrarily
to APEX and Posix. In order to cover all the three standards, we have to propose entity
models that can be either hierarchical or not, and can execute concurrently. The way these
entity models have to be managed will depend on the scheduling paradigms supported by
each standard. In Posix the scheduling of processes relies on priorities while in APEX the
corresponding entities, i.e. partitions, are scheduled based on a time sharing. In addition,
the scheduling of Posix threads is possible from different perspectives (local, global and
mixed) while in APEX, the scheduling of processes is only local. In order to support the
scheduling of Posix threads, APEX processes and OSEK tasks and interrupts, fixed and
dynamic priorities must be supported. Finally, all other scheduling paradigms should be
made possible: time-triggered, round-robin and FIFO.

3. Generic RTOS component models

The generic RTOS components proposed in this section are illustrated in the syn-
chronous language Signal [7, 2]. Signal basically assumes a logical notion of time, de-
fined according to partial order and simultaneity of events observed during system execu-
tions. It handles unbounded series of typed values (e.g., integer, boolean), called signals
and denoted as x in the language. At a given logical instant, a signal may be either present,
at which point it holds a relevant value; or absent and represented by L at this point.
There is a particular type of signals called event. A signal of this type is frue whenever it
is present. The set of instants at which a signal x is present is termed its clock and written
X, of type event. Two different signals x1 and x2 with the same clock are said to be syn-
chronous, noted as x1= x2. A process is a system of equations defining constraints over
the clocks and values of signals. A program is a process. Signal relies on six primitive
constructs used to define processes modularly. Among these constructs are the parallel
composition P | Q denoting the union of equations in processes P and Q; and the local
declaration P where x, restricting the scope of a signal x to a process P.

3.1. RTOS services

Our generic service model illustrated in Figure 2, distinguishes two levels. Even though
it is represented by a unique hierarchical box, it should be understood from

different perspectives: abstract and detailed views. The up- Generic model
per level (gray background) captures an abstract view of a ! specific L
service by specifying its behavioral properties in a very gen- e

eral way. This is done by describing the interface proper-

ties of the service: identifiers and types of parameters, data-  Figure 2. Generic service.
dependencies and clock constraints between inputs and outputs. This level of detail is rich
enough to enable relevant formal analysis in Signal. The inner level (dark background)
of the model in Figure 2 represents a detailed view of the service that specializes the
generic model as an implementation according to standards by taking into account their
minor differences. So, from a single abstract service model, different specific models are
obtained by detailing the internal part of the model in addition to interface properties.
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In order to illustrate the above principle, let us consider a service associated with
semaphores to perform a “wait” request. In Posix, such a service is known as sem_wait()
while in APEX it is denoted by the service wait_semaphore. The following Signal process
named Generic_Wait_Semaphore is a generic model for the wait service:

01: process Generic_Wait_Semaphore =

02: { EntityID_type entity_ID; }

03: (? ResourceID_type semaphore_ID; SystemTime_type timeout;
04: ! ReturnCode_type return_code; )

05: spec

06: (I (I return_code = when C_return_code

07: | semaphore_ID = timeout= C_return_code I)

08: | semaphore_ID, timeout —> return_code when C_return_code [)
09:  where boolean C_return_code;

10: end;

11: pragmas C_CODE "&ol = wait_semaphore(&il, &i2)" end pragmas;

Generic_Wait_Semaphore is parametrized with the identifier of the requesting entity
(line (02)), used as information when the entity is suspended upon the request. The inputs
and output parameters of the service are declared at lines (03) and (04) respectively. This
process mainly expresses interface properties, introduced by the keyword spec in Signal.
For instance, line (06) specifies the logical instants at which a return_code signal is
produced on an invocation of the service. C_return_code is a local Boolean signal that
must be frue whenever a return code is produced: it is expressed via the “when” operator
of Signal. Line (07) states that it occurs (with either true or false values) whenever there
is a wait request, denoted by the simultaneous occurrence of input signals. Line (08)
specifies a data dependency between inputs and output when a return_code occurs. These
interface properties, characterizing the upper level of the service model, are expressive
enough to enable relevant dependency and clock analysis.

Now, in order to make a link with the inner level of the model, representing some
specific implementations of the service, the pragma notion of Signal is used. Here, a
pragma is a statement to be taken into account during automatic code generation from a
component model. Line (11) states that the C code implementing the detailed behavior of
Generic_Wait_Semaphore is given by a wait_semaphore function defined elsewhere.
This function refers to the inputs and output of the service model respectively via the &il,
&i2 and &ol1 encodings. It is either user-defined or an intellectual property provided in a
library of C code for RTOS services. The same holds for C++ or Java code from Signal.

3.2. Executive entities

The generic model of executive entities is depicted by Figure 3. It comprises three
basic building blocks: a local controller, local re-

sources and a set of actions that achieve together A conticmer ¢ { WEEE™ }
and in a modular way the functionality associated L ; >
with the entity. According to the considered per- e e

FESOLMEs - o

spectives for scheduling, the controllers and actions

play various roles as explained below. The role of Figure 3. Generic entity.

the controller is to manage the actions to be performed by an entity. It may be a simple
finite state machine describing the execution flow in an elementary executive entity such
as a Posix thread or an APEX process. It may also be a complex scheduler in a com-
posite entity where the actions are themselves executive entities. In such a case, it plays
the role of Posix process or APEX partition level operating system. Finally, at another
hierarchical level in a composite entity, where actions can be either Posix processes or
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ARINC partitions, the controller will describe a suitable scheduling paradigm. The local
resources consist of all data required within an entity to perform the actions. They include
inputs and local data in an elementary entity, local communication and synchronization
resources in a composite entity, e.g., events and semaphores. In elementary entities, an
action denotes the minimum subset of statements to execute atomically, e.g., a service
invocation. So, it defines the preemption level. In composite executive entities, actions
become potential hierarchical entities.

As an illustration, let us consider a 2-level composite entity, e.g., a Posix process or
an APEX partition. The following Signal processes are component templates combined
with the parallel composition operator to obtain a composite or an elementary executive
entity (for the sake of simplicity, interface properties are omitted):

process Main_Controller =
{ EntityID_type entity_ID; ...}
( ? EntityID_type Active_entity_ID; real dt;
! EntityID_type Active_SubEntity_ID; [NB_Entity_ID] boolean timedout;) ...
process Sub_Controller =
{ EntityID_type entity_ID; ...}
( ? EntityID_type Active_entity_ID; [NB_Actions]boolean timedout;
[NB_Actions] Control_type info;
! BlockID_type Active_action_ID;3) ...
process Action =
{ ActionID_type action_ID; ... }
( ? ActionID_type Active_action_ID; InputData_type rl,...,rk;
! Control_type info; SystemTime_type dt; OutputData_type ol,...,0j;) ...

In the Main_Controller process, the input Active_entity_ID denotes the identifier
of the selected composite entity to run (when it is equal to entity_ID). Whenever this
entity executes, Main_Controller selects an active sub-entity denoted by the output Ac-
tive_SubEntity_ID. The input signal dt denotes a duration information corresponding
to sub-entity execution. It is used to update time counters. The output signal timedout
reflects the current status of the time counters within the composite entity.

In Sub_Controller, whenever the input Active_entity_ID identifies a sub-entity, the
corresponding actions are executed. These actions are identified by Active_action_ID.
Since Sub_Controller expresses the control flow of a sub-entity, it may require some
feedback information, denoted by the info input signal, from the performed actions. It
also requires counter status to decide what to do when the sub-entity has been already
suspended on a blocking service request such as Generic_Wait_Semaphore.

In a similar way, atomic actions (modeled by the Action process) are executed when-
ever they are selected by a Sub_Controller process. In that case, they take input data and
produce output data as well as the other information required by the different controllers:
dt for counter management and info for sub-entity control flow management.

At the Main_Controller level, local resources are represented by declarations of
communication and synchronization mechanisms, and data required by functions. At the
Sub_Controller level, they mainly consist of input data for elementary entities.

From a practical point of view, the generic models of RTOS services and executive
entities presented above could be obtained from a straightforward extension of the com-
ponent library described in [3]. This library has been fully implemented in the Signal en-
vironment, Polychrony, for the APEX standard.

CARI 2010 - YAMOUSSOUKRO
- 138 -



4. Formal analysis and simulation for earlier validation

Polychrony offers a set of facilities usable on designed models for formal verification
and analysis, as well as automatic code generation in C, C++ or Java.

Reactivity, determinism, mutual exclusion, deadlock and safety. The Signal com-
piler implements a powerful formal calculus that allows the designer to address the func-
tional properties of an application model. Beyond the syntactic and type checking of
general-purpose languages compilers, it suitably deals with key properties such as re-
activity and determinism. For this purpose, it focuses on the clock constraints inherent to
a given program. Typically, reactivity is ensured by checking the absence of empty signal
clocks in the program, which means that there is no signal that never occurs. Reactivity is
a major characteristic of real-time systems since they are expected to react whenever their
connected environment solicits them. Functional determinism is another crucial charac-
teristic of real-time systems, which can be guaranteed by checking that a Signal program
satisfies the so-called endochrony property. Such a property relies on a specific clock
hierarchy resulting from the clock analysis performed by the compiler.

Further important design aspects such as mutual exclusion can be also addressed by
analyzing clocks. This is possible by asking the compiler to partition the signals of a
program according to the fact that they never occur at the same instants. In other words,
they have mutually exclusive clocks. Such an information is useful to ensure absence of
resource access conflicts among different executive entities. For instance, on concurrent
write in a buffer, if the written data are represented by signals with mutually exclusive
clocks, then no additional synchronization will be required for the buffer access.

In addition to clock-based analysis, the compiler also focuses on data-dependencies
to verify that no instantaneous cyclic definitions exist in the program in order to avoid
execution deadlocks. Finally, more advanced functional properties are checked by model-
checking with the Sigali tool [8], connected to Polychrony in a seamless way. Usual tech-
niques like reachability and liveness analyses are made possible to prove the safety of
Signal models of real-time application w.r.t. given user-defined properties.

Performance analysis. Temporal properties, which are of high importance in real-
time systems, are also analyzable by using a performance analysis technique [6]. Ba-
sically, it consists of formal transformations of a Signal program P into another pro-
gram T (P) corresponding to a quantitative temporal interpretation of the initial one. 7 (P)
serves as an observer of P in which the temporal properties of interest are specified. In
[4], this technique is applied to a realistic avionics application modeled in Signal with
APEX to illustrate a performance analysis.

Functional simulation. The mathematical foundations of the Signal language con-
fers to programs a non ambiguous semantics that is trust-worthily manipulated to define
correct-by-construction program transformations. The automatic code generation pro-
vided by Polychrony benefits from this principle. It enables to produce simulation code
in general-purpose languages such as C or Java. The code can be either monolithic or
distributed. It therefore offers the opportunity for intensive functional simulations that ex-
hibit system behaviors according to considered design choices. This serves as a basis for
the designer to assess and improve the designed application models.
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5. Concluding remarks

In this paper, we have shown how features of different RTOS standard are integrated
in a unique formal modeling framework for the rapid virtual prototyping of real-time ap-
plications. The considered standards are APEX, Posix and OSEK. Our proposition is built
upon a previous study about the synchronous modeling of avionics applications in Sig-
nal. Here, the resulting generic models serve together with the synchronous technology
to address the flexible and reliable design of real-time applications. They offer an abstrac-
tion level allowing one to cope with system design independently from specific RTOS
features. Different RTOS APIs are easily reusable and interchangeable from a unique
generic model. To the best of our knowledge, only very few design frameworks for real-
time systems provide such capabilities. As an example, we can only mention the SynDEx
approach that considers a form of generic RTOS services adapted to its associated en-
vironment [5]. On the other hand, the description of our models in Signal gives access
to a rich formal tool-set suitable for the trustworthy analysis and simulation of designs.
Integrating all these aspects in a design process became necessary with the growing com-
plexity of safety-critical applications. The main perspective of this work concerns the full
implementation of the whole service models in Polychrony, the Signal design environ-
ment (note that we already have a large part of these models via [3]).
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