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0000001 On considére un modele de transmission de la bilharziose prenant en compte les hétérogé-
néités. Nous calculons le taux de reproduction de base Nous montrons que si Ro < 1, alors I'équilibre
sans maladie est globalement asymptotiquement stable. Si Ro > 1, alors il existe un unique équi-
libre endémique et celui-ci est globalement asymptotiquement stable. Nous considérons ensuite les
applications possibles a des données réelles.

000000000 We consider an heterogeneous model of transmission of bilharzia. We compute the
basic reproduction ratio Ro. We prove that if Rg < 1, then the disease free equilibrium is globally
asymptotically stable. If Ro > 1 then there exists an unique endemic equilibrium, which is globally
asymptotically stable. We will then consider possible applications to real data

000010000 ¢ Bilharziose, modeles de Métapopulations , hétérogénéités spatiales, systemes forte-
ments monotones, stabilité globale et locale.

00000000 1 Bilharzia, Metapopulation model, Spatial heterogeneity, Strongly monotone systems,
Local and global stability.

CARI 2010 - YAMOUSSOUKRO
- 101 -



(I [0o0bo0oon

Schistosomiasis, also known as bilharzia after Theodor Bilharz, who first identified the
parasite in Egypt in 1851, of all the human parasitic infections, is one of the most wides-
pread. It is second only to malaria in terms of socioeconomic and public health impact in
tropical and subtropical areas. An estimated 200 million people in 74 countries are infec-
ted with the disease -100 million in Africa alone. School-age children are most likely to
become infected with this silent, destructive disease because it is easily contracted while
bathing or swimming in water contaminated with the parasite. Children shoulder the ma-
jority of schistosomiasis’ consequences, especially poor growth and impaired cognitive
function. For communities already burdened by poverty and ravaged by scourges such as
malaria and HIV/AIDS, schistosomiasis is especially devastating.

Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the
genus Schistosoma. The cycle of bilharzia is complex.

The Life Cycle of Schistosomiasis
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Larval forms of the parasites, cercariae, which are released by freshwater snails, penetrate
the skin of people in the water. In the body, the larvae develop into adult schistosomes,
which live in the blood vessels. The females release eggs, some of which are passed out
of the body in the urine or faeces. Others are trapped in body tissues, causing an immune
reaction.
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In urinary schistosomiasis caused by Schistosoma haematobium, there is progressive da-
mage to the bladder, ureters and kidneys. In intestinal schistosomiasis, caused by Schisto-
soma mansoni, there is progressive enlargement of the liver and spleen, intestinal damage,
and hypertension of the abdominal blood vessels.

Extensive water development has taken place in the north of Senegal over the last decade,
resulting in a large increase in the amount of fresh water for irrigation. New freshwater
habitats for snail intermediate hosts of schistosomes may be created by the construction of
dams and irrigation projects. Greater opportunities for water contact may lead to increases
of both urinary and intestinal schistosomiasis, as has been observed in villages along
the Senegal river basin. We will work on the data obtained by the research NGO EPLS
(Espoir pour la Santé, Saint-Louis, Sénégal, http://www.espoir-sante.org/ ) in a
walo village named Podor, during a campaign in 2004-2005.

Mathematical models are potentially valuable aids to a quantitative understanding of
schistosome epidemiology and to the design of control programs. The first model Barbour
and others [1, 2] and others have pointed to the potentially strong influence of population
and environmental heterogeneities on parasite transmission in endemic communities. This
work is a preliminary study of the collaboration with EPLS. A basic theoretical model,
inspired from [1], is described that is developed to incorporate the impact heterogeneous
transmission rates, and the effects of control measures. We analyze the asymptotic beha-
vior of this model. This work is the first step of the collaboration with EPLS.
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We consider ! multiple homogeneous populations sites, i.e., patches and m water contact
sites. In the sequel we will use, for these water contact sites, for briefness, the term pond.
The human sites can be villages or small clusters of humans. Usually in Senegal, the
access to water is not situated in the village. Then a contact water site can either be a
location in the bank of the river Senegal where villager take water or be a pond or a be a
irrigation channel for rice culture ...
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We denote, as done in [1], by w € R{F the vector of worm burden variables labelled
by each homogeneous patch and by y € R the vector of number of infected snails in
each water site. This model is generalization of Macdonald model [3] for one site for
human and one location for water. In this Macdonald model the population of humans
and snails were assumed to be constant. We assume the analogous hypotheses and denote
by N € R the vector of number of snails in each pond.

L. . I+
The model is given by the following system on R

w = Ay —diag(y)w
)]
y = diag(1 — diag(N)~'y)Bw — diag(p)y.

Where A is a nonnegative m x | matrix, which captures the snails to human transmission,
B is a nonnegative | x m matrix, which captures the man to snails transmission. The vector
Yy € R is the vector of death rates of female schistosome in the human host population,
and W € R is the vector death rates of snails in each water site.

We also note by 1 the vector (1,-- -, 1)T of R™.

The notation diag(X) represents, if X € R™ the n x n diagonal matrix, whose diagonal
terms are given by the components of X.

The entry A(i, ), the i-th -row, j-th column of A represent the rate of water contact of
an individual of patch i to the water site J, multiplied by the rate of infection of this
individual for an adequate contact by a cercaria. Similarly the entry B(i, j) is the rate of
water contact of an individual of patch i in water site j multiplied by the rate of infection
of snails in pond j.

To a n x N matrix M is classically associated a directed digraph G(M ) with n vertices
[7]. To a graph G of order n is associated its adjacency matrix adj(G). The symmetry of
contact snail-human implies that

adj(G(A)) = adj(G(B))"

The graph of relation between human patches and ponds is then a bipartite graph. Then
we can just consider the undirected graph associated to the digraph.

This a consequence of biology, this relation says simply that if a human has contact with
water, he can contaminate the pond and also get contaminated.

We will assume, without loss of generality, that the graph of the relations between human
and snails, which is given by the following adjacency block matrix

0 adj(G(A))
adj(G(B)) 0

is irreducible :

The nodes of this |+ M order graph are the patches and the ponds. There is an arc between
a patch and a pond and between a pond and the patch if the humans of the patch visit the
pond.

This irreducibility hypothesis is not a loss of generality. Indeed, by symmetry, we can
consider the associated undirected graph. For this graph, the connected components coin-
cide with the strong connected components. Then we can just consider the separate connec-
ted components of the graph, whose behaviors are independent. Hence our hypothesis is
not restrictive.
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Just for the exposition, we assume that there are more patches than ponds, i.e., [ > m.
The analysis of the other case m > [ is similar.
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Hereafter we denote x < y if, for any index i, z; < y;;z < yifz <yandz #y;z <y
if x; < y; for any index ¢ ;

Proposition 3.1 The set
C1 . 1
K= (wy) eRf™ | 0<w<diag(y)™' N ; 0<y<N
is an absorbing compact set on ]RTH, positively invariant for the system (1).

The proof is straightforward. The model is well posed. The domain K is the biological
domain of the model.

Proposition 3.2 i
System (1) is a strongly monotone system on the open set K (open set relatively to ]R:_"’H )

. 1
K= (wy)| 0<w<diag(y)7'N ; 0<y< N

Proof
The Jacobian of the system is given by
1 . 1
—diag(7) A
J(w,y) = o

diag(1 — diag(N)~'y) B  —diag(u) — diag(B w) diag(N)~!

This matrix is a Metzler matrix (i.e. the off-diagonal terms are nonnegative) and is irredu-
cible, which proves the proposition.
|
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We use the results and the notations of [4], with the exception that we change the sign V.

The disease free equilibrium (DFE) is (0, 0). The part of the Jacobian, computed at
the DFE, coming from the disease transmission is denoted by F' and the remaining part is
denoted by V' (note this is —V in [4]).

L1 [ 1] L1 1
0 A —diag(v) 0
Fo Cly - ] 1
B 0 0 —diag ()
The next generation matrix is given by ' = —F V ~! The basic reproduction is the
spectral radius of the next generation matrix Rg = p(—F V') = p(— V=1 F). Then
1 ] 1T 1
0 diag(y)~t A
Ry = p LI
diag(u)~' B 0
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Proposition 4.1
The basic reproduction ratio is the square root of the spectral radius of a m x m matrix

2 L] -1 . o U
Ry = p diag(p)”" B diag(y)™" A

This is simply a consequence of the structure of the next generation matrix, and the use
of a Cayley reduction.
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The following theorem gives the complete stability analysis of system (1)

Theorem 5.1

IfRo < 1the DFE is globally asymptotically stable. If Ro > 1 then the DFE is unstable,
there exists a unique endemic equilibrium p > 0 in K, which is globally asymptotically
stable.

Proof

The proof follows from a theorem of Hirsch [4] improved by Smith [5] combined with
the results of Diekmann et al. [6].

From [6] if Ry < 1 the DFE is locally asymptotically stable and if Ry > 1 the DFE is
unstable. The theorem of Smith says

Theorem 5.2 Let F be a C! vector field in R™, whose flow ¢ preserves RY fort > 0
and is strongly monotone. Assume that the origin is an equilibrium and that all forward
trajectories in R} are bounded. Suppose that the matrix-valued map DF : R" — R™*"
satisfies

x>y>0= DF(z) < DF(y).

Then either all trajectories in R} tend to the origin, or else there is a unique equilibrium
p > 0 which is globally asymptotically stable on R”; \ {0}.

The Theorem is also true for the set K, by adapting easily the Hirsch’s proof to K.

The hypotheses of Hirsch-Smith theorem 5.2 are satisfied , for oir system, by propositions
(3.1) and (3.2). The Jacobian given in the proof of proposition (3.2) satisfies clearly the
condition

(w1,y1) > (wa,y2) > 0= J(w1,y1) < DF(w2,y2).

We assume that there exists, in K, an endemic equilibrium p > 0. Then p = (w,¥)
satisfying the equations

1 .

—1 Ay =diag(y)w
(2)
I%Iag(]l —diag(N)"ty)Bw = diag(u)j

Then

diag(1 — diag(N) ™' §) Bdiag(y) ™' Ay = diag(u) y
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Equivalently, using the matrix R = diag()~* B diag(y)~! A, we have, using the com-
mutativity of diagonal matrices.

y = diag( — diag(N)"'y) Ry < Ry

The strict inequality comes from diag(N) ™!y < 1.

It is a simple consequence of irreducibility, that R is a nonnegative irreducible matrix.
Then we have y < Ry, from [7] Theorem 3.31, we deduce RZ = p(R) > 1. The
DEFE is unstable. By a theorem of Varga, this implies that the Jacobian, computed at the
DEFE is unstable, with the stability modulus positive. The Jacobian at the DFE is given by
J = F + V. If we denote the stability radius of J by s(J), by Perron-Frobenius theorem
we deduce that there exists v > 0 such that

Jv=s(J)v

Then when Ry < 1 there is no endemic equilibrium. Hence by Smith result the DFE is
globally asymptotically stable.
When R > 1 then the DFE is unstable, and there exists an unique endemic equilibrium
p = (w,y) > 0in K, which attracts all the trajectories.
Moreover, since K is absorbing, this proves the global stability of p.

|
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The chemotherapy of population acts on diag(vy), a biological control will acts on
diag(y:). With the value of Rg

RE = p (diag(n) ™" B diag(7)~" A)
and the properties of nonnegative matrices, augmenting the vector y will reduce R¢. But
the relation is far from linear. We have now to explore numeically the most effective way
to reduce Ry.
This suppose that the intervention, in this case chemotherapy of some population, is
continuous. In reality the intervention are discontinuous. The model must be extended
to “pulse" chemotherapy. This will be addressed elsewhere.
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