
������ ���������� �� ��������� ���� ���
���� 
���	����

������ �������� � � �������� ������� ��

� ��������
 �	 �������
��������� �	 �������� ������� �������� �������
����������•
�•���	�

�� ��������
 �	 •��
��������� �	 �������� ������� •��� �������
�
������•���������

������
�� Grid computing is becoming a mainstream technology for large-scale resource sharing
and distributed system integration. Task assignment is one of the core steps to effectively exploit the
capabilities of grid computing environment. The task assignment problem is an NP-complete problem.
In this paper we propose a hybrid assignment strategy of dependent tasks in Grids which integrated
static and dynamic assignment technologies. Our main objective is to have a task assignment that
could achieve reduced response time, maximum node utilization and a well-balanced load across all
the nodes involved in a grid.

������� Les grilles de calcul deviennent des technologies principales pour le partage des res-
sources à grande échelle et l’intégration des systèmes distribués. Le placement des tâches est l’une
des étapes essentielles pour exploiter efficacement les capacités des environnements des grilles de
calcul. Le problème de placement des tâches est un problème NP-complet. Dans ce papier, nous
proposons une stratégie hybride de placement des tâches dépendantes dans les grilles de calcul,
qui intègre les technologies de placement statiques et dynamiques. Notre principal objectif est de
parvenir à un placement de tâches qui pourraient aboutir à un temps de réponse réduit, à l’utilisation
maximale des nœuds et à un bon équilibrage de charge sur l’ensemble des nœuds de la grille.

�••••��� • Tasks assignment, Grid computing, Dependent tasks, Directed acyclic graph.

�•��•
 �� • Placement de tâches, Grilles de calcul, Tâches dépendantes, Graphe acyclique dirigé.



1. Introduction
In order to provide high performance computation power to serve the increasing need

of large applications, people strive to improve the single machine’s capacity or construct
a distributed system composed of a scalable set of machines. Compared to the former, in
which improvement is mainly up to hardware technology development, the construction
of a distributed system for resource collaboration is more complex. Grid computing is
one of well-known existing or ongoing distributed systems composed of heterogeneous
resources. While this system, bring unprecedented computing power for users, how to
deliver this great computing power is still an elusive problem. One of the major puzzles
is how to assign applications in this system [1].
A precedence relation from task i to task j means that j needs data from i before being
started. If these two tasks are not assigned to the same computing element, a delay c��

must be considered between the completion of i and the beginning of j to transfer the
data. In general, scheduling applications in a distributed system is a NP-hard problem
even when the tasks are independent. The problem is much more difficult when the tasks
have dependencies because the order of task execution as well as task-machine pairing
affects overall completion time [2].
Tasks assignment policies for distributed systems can be generally categorized into static
tasks assignment policies and dynamic tasks assignment policies [3] :

– Static tasks assignment policies use some simple system information, such as the
various information related to average operation, operation cycle, and etc., and according
to these data, tasks are distributed through mathematical formulas or other adjustment
methods, so that every node in the distributed system can process the assigned tasks until
completed. The merit of this method is that system information is not required to be col-
lected at all times, and through a simple process, the system can run with simple analysis.
However, some of the nodes have low utilization rates. Due to the fact that it does not
dynamically adjust with the system information, there is a certain degree of burden on
system performance.

– Dynamic tasks assignment policies refer to the current state of the system or the
most recent state at the system time, to decide how to assign tasks to each node in a
distributed system. If any node in the system is over-loaded, the over-loading task will
be transferred to other nodes and processed, in order to achieve the goal of a dynamic
assignment. However, the migration of tasks will incur extra overhead to the system. It
is because the system has to reserve some resources for collecting and maintaining the
information of system states. If this overhead can be controlled and limited to a certain
acceptable range, in most conditions, dynamic tasks assignment policies out perform the
static tasks assignment policies.

There have been many heuristic algorithms proposed for the static and dynamic tasks
assignment problem. Many of these algorithms apply only to the special case where the
tasks are independent i.e. there are no precedence constraints [4, 5].
Many heuristic algorithms have been proposed for static scheduling of dependent tasks
where task precedence constraints are modelled as a directed acyclic graph (DAG) [6, 2].
Large and non dedicated computing platforms as grids may require dynamic task as-
signment methods to adapt to the run-time changes such as increases in the workload or
resources, processor failures, and link failures [7]. In this paper, we address these issues.



In this study, we propose a assignment strategy of dependent tasks in Grids which has
the advantage of being able to divide the input task graph into set of connected compo-
nent in order to reduce the response time of system application. This strategy meets the
following objectives:
(i) reducing, whenever possible, the average response time of tasks submitted to the grid,
(ii) respecting the constraints of dependency between tasks, and,
(iii) reducing communication costs by using a static tasks placement based on the con-
nected components algorithm to minimize the delay � �� between task i and task j and by
favoring a dynamic tasks placement within the cluster rather than the entire grid.
The rest of this paper is organized as follows. Section 2 describes, briefly the problem.We
present, in section 3, our system architecture, and in section 4, we define the main steps
of the proposed assignment strategy. Section 5 gives an performance evaluation of the
proposed scheme, and, section 6 concludes this paper.

2. Problem description
An application can be represented by a directed acyclic graph (DAG) D= (V, E), where

V is a set of v nodes and E is a set of directed e edges. A node in the DAG represents
a task which in turn is a set of instructions which must be executed sequentially without
pre-emption in the same processor. The edges in the DAG, each of which is denoted by
(� � , � � ), correspond to the precedence constraints among the nodes. The weight of an
edge is called the communication cost of the edge and is denoted by � �� . The source
node of an edge is called the parent node while the sink node is called the child node.
A node with no parent is called an entry node and a node with no child is called an exit
node[8]. The figure1, shows a task precedence graph constituted by five tasks, with one
entry task � 1and three exit tasks � 3,� 4,� 5.

Figure 1. ���� ���������� �����

We consider that tasks arrive randomly with a random computation length, an arrival
time and precedence constraints. In our work, we generate randomly precedence con-
straints between tasks. Also, we believe that tasks can be executed on any computing
element and each CE can only execute one task at each time point, the execution of a task
cannot be interrupted or moved to another CE during execution.
We also assume that a task cannot start execution before it gathers all of the messages
from its parent tasks. The communication cost between two tasks assigned to the same
processor is supposed to be zero.



�� ������ ������������

In our study we consider a Grid as a collection of n clusters with different computa-
tional facilities.
Let G = (C1, C2,..., Cn) denotes a set of clusters, where each cluster Ci is defined as
a vector with four parameters : Ci = (NCEi, Mi, Bandi, Spdi), where NCEi is the
number of computing elements, Mi is the Manager node of the cluster Ci, Bandi is the
bandwidth of the network, Spdi correspond to the cluster capability.
A cluster is a set of R computing elements Ci = (CEi1, CEi2,..., CEir), where each
computing element CEij , have it own capability.
The cluster manager CMi uses the following equation to calculate Spdi:

Spdi =
∑

j∈NCE�

Spdij [1]

Figure2 shows the Grid system model. In highly distributed systems, centralized work
tasks assignment approaches become less feasible because it make use of a high degree of
information, which causes a high work tasks assignment overhead. That is why we chose
to develop a hybrid load balancing model that is centralized intra-cluster, but distributed
inter-clusters. Each cluster in the Grid has a manager, which assign tasks to the cluster
computing element.

������ �� ��� ���� �����

We assume that in the grid under study there is a central resource broker (CRB), to
which every Cluster Manager (CM) connects and the grid clients send their tasks to the
CRB. The CRB is responsible for scheduling tasks among CMs.



4. Proposed strategy
In order to reduce the global response time of the system and respect the tasks de-

pendencies, this study proposed a hybrid tasks assignment policy, consisting of static and
dynamic tasks assignment strategies. In the static case, when a user sends his tasks, they
will be assigned to appropriate computing elements to achieve the goal of placement. In
addition, in the dynamic case, the system will be adjusted dynamically according to the
clusters workload.

4.1. Static tasks placement strategy

4.1.1. CRB
The role of the central resource broker in the system is to assign statically tasks placed

in the task queue. For that we propose the following steps that will be executed periodi-
cally:

– Partition all tasks waiting in the queue to x connected component by executing the
connected component algorithm. A connected component is defined as a collection of
dependent tasks with inter-task data dependencies. The following figure shows a set of
waiting tasks composed of three connected component.

Figure 3. ������� ���� ����� ��������� ����������

– Sends each connected component �� � to a cluster manager �� � , using a round
robin strategy, as follows :
(�� 1, �� 1), (�� 2, �� 2),..., (�� � , �� � ), (�� � +1,�� 1),...,(�� � , �� � )

– Sends tasks associated to the connected component �� � , to cluster manager �� � .
4.1.2. Cluster manager

Once the manager receives the connected component, it affects them to the computing
elements composing the cluster:

– Randomly, or,
– Using a round robin strategy : (�� 1, �� 1), (�� 2, �� 2),..., (�� � , �� � )

Then the cluster manager sends tasks composing each connected component �� � to the
same computing element as �� � .



4.2. Dynamic tasks placement strategy

4.2.1. Computing element
The computing element, perform these steps while its tasks queue is not empty:
– Run the first entry task Tj (with no precedence constraints) of its tasks queue.
– Updates the connected component CCj associated to task Tj .

The computing element executes the following steps periodically:
– Executes the connected component algorithm on CCj to obtain the new entry tasks.

Figure4 shows an example of a connected component with one entry task. After the end
of execution of Tj , the CCj is divided on three connected components.

Figure 4. ������� ���� ��� ����� ����

– Computes its execution time texij as follows :

Texij �
�

c∈CCNij

�

l∈L

�

k∈P

lenghtc,k

Spdij
[2]

Where, CCN is the connected component number assigned to the computing element.
L is the level number of connected components, and P is the tasks number of level k.

– Sends its execution time to the cluster manager and computing elements.
– We define a threshold α, from which a resource CEij can say that it is more loaded

than another.
If (Texij > Texik +α ) then transfer some connected components from CEij to CEik
until Texij ≤ Texik + α.

– Inform the cluster manager about the tasks movement.
4.2.2. Cluster manager

The cluster manager receives periodically the execution time of each resource of the
cluster and performs the next steps:

– Computes the execution time of cluster as follow :

Texi �
�

j∈R

Texij [3]

– We define a threshold β, such as :
If (Texi >Texk + β) then transfer some connected components from Ci to Ck until
Texi ≤ Texk + β.



�� ���������� �������

�� ���� ��� �������� ��� ����������� �� ��� ������ � ��������� ��� �������� �����
��� 
�	��	� ��� �	������� �	���� 	� ����� � ����
�	� 
������� ��� ��	� ���•�����	�� •�� ��������� ���•��� ������	�� ������� ���•��� ���	�
���������	��	��� ���	�� ����	�� ���� 	�������	��� •���	��� •••��
�		� 
������� � ��� �� ���•� 	�� ��� �����	���� ���� ���•�	��	�� �	��� ��������	�� �������
���������� �������	���•••�•
••���	����� ��� ��������� �� �   € 
‚ƒ  ���	�� „…� 	�� †
‡ �� ������ ��� ���ˆ
�	�� �� ‰	��• Š����� �•‹•
„� ��� •��� ��� �� �•���	����� � ������� ������� �����	�� �� �•Œ���	�� ����	��� ������	��
�� ���	��� ���•��� �� ���•� ��� ��������• Ž� ���� ���	�� ��� �������� ���•�� ���� ‘
�� ’ •� ���� �� ‘• Ž� �������� ���� ���� ������� 	������� €‹ ������	�� ��������• “��
���� ���� � �������� �������� �����	���� ����� ����	�� •����� ” ��� €‹ •„ �• ���
���•�� �� ���•� ���� •��� ���	�� ���� ”‹‹ �� ‘‹‹‹ •� ���� �� ”‹‹� 	�� �	ƒ�� ��������
��������� •����� †‹‹‹ ��� †‹‹‹‹‹ •„ �•	��	�� �� „�������	����• Ž� ���� �������� ���ˆ
����� ���������� �������	��� •����� ���•�•
��•��† ���� ��� ���	��	�� �� ��� ������� �������� �	�� �	� �������� before ��� after �•ˆ
����	�� �� ��� ��������•

����� �� Response time results

– ������� 2 4 6
– ���•�

Before †•†‹•—‹” ‹•˜†•—‹” ‹•™”•—‹”
500 After ‹•™”•—‹” ‹•’”•—‹” ‹•’‹•—‹”

Gain 23% 19% 20%
Before €•†€•—‹” †•™�•—‹” †•™†•—‹”

1000 After ‘•‘†•—‹” †•†�•—‹” †•’‘•—‹”
Gain 29% 34% 6%

Before ”•‹˜•—‹” €•š˜•—‹” €•€€•—‹”
1500 After ‘•€†•—‹” ‘•‘†•—‹” ‘•”˜•—‹”

Gain 55% 36% 23%
Before ’•�”•—‹” ”•‘†•—‹” ”•”‘•—‹”

2000 After š•€�•—‹” €•�€•—‹” €•š‹•—‹”
Gain 36% 26% 38%

Ž� ��� ���� ��� �����	���

›  ������� �������� ������ �� ������ 	� � ���� ����� �� ��� ������� �������� �	�� �� ���
���•�• Ž� �•��	� � ��	� ����	�� •����� ’œ ��� ””œ•

› „� ���� ���� �‹œ �� ������ ��	� 	���������� 	� ������� ���� ‘‹œ•

› ��� ���� •���•�� ��� �•��	��� ��� ��� ���•�� �� �������� ��� ��� �� ’• Ž� ���
Œ���	�� ��	� •� ��� 	����•	�	�� �� ��� 
�	� ����� �•��� ����� ��� ����������� �� ���� 	����•

› ��� •��� ��	�� ��� ����	ƒ�� ��� ��� 
�	� 	� 	� � ���•�� ������ �“�� ‘ ��� š ���������•



6. Conclusion
In this paper we have proposed a hybrid assignment strategy of dependent tasks in

Grids which integrated static and dynamic assignment technologies for solving the place-
ment problem. A tasks placement strategy is introduced; it has the advantage of being
able to divide the input task graph into set of connected component in order to reduce the
response time of system application.
To test and evaluate the performance of our model, we developed our strategy under the
GridSim simulator written in Java. We have randomly generated clusters with different
characteristics and a set of dependent tasks. The first experimental results are encouraging
since we can significantly reduce the average response time.
In the future we want to improve the proposed strategy by integrating the multi-agent
systems. We will also define other metrics of performance to evaluate and compare our
approach with other already existing.
To measure the efficiency of the strategy, we plan to compare its performance with other
grid simulators such as SimGrid [10].

7. References

[1] MING WU , XIAN-HE SUN, “A General Self-Adaptive Task Scheduling System for Non-
Dedicated Heterogeneous Computing”, cluster, pp.354, Fifth IEEE International Conference
on Cluster Computing (CLUSTER’03), 2003.

[2] WAYNE F. BOYER , GURDEEP S. HURA, “ Non-evolutionary algorithm for scheduling depen-
dent tasks in distributed heterogeneous computing environments”, J. Parallel Distrib. Comput.
�� , 1035–1046, 2005.

[3] K. Q. YAN, S. C. WANG, C. P. CHANG , J. S. LIN,“ A hybrid load balancing policy under-
lying grid computing environment”, Computer Standards and Interfaces. �� , 161–173, 2007.

[4] KATIA LEAL, EDUARDO HUEDO , IGNACIO MARTÍN LLORENTE, “ A decentralized model
for scheduling independent tasks in Federated Grids”, Future Generation Comp. Syst. �� ,
840–852, 2009.

[5] SANCHO SALCEDO-SANZ , YONG XU, XIN YAO, “ Hybrid meta-heuristics algorithms for
task assignment in heterogeneous computing systems”, Computers and OR. �� 820–835, 2006.

[6] YANG QU, JUHA-PEKKA SOININEN , JARI NURMI, “ Static scheduling techniques for de-
pendent tasks on dynamically reconfigurable devices”, Journal of Systems Architecture. �� ,
861–876, 2007.

[7] BORA UÇAR, CEVDET AYKANAT, KAMER KAYA , MURAT IKINCI, “ Task assignment in
heterogeneous computing systems”, J. Parallel Distrib. Comput. �� , 32–46,2006.

[8] YU-KWONG KWOK , ISHFAQ AHMAD, “ Static scheduling algorithms for allocating directed
task graphs to multiprocessors”, ACM Computing Surveys. �� , 406-471, 1999.

[9] R. BUYYA , M. MURSHED, “ Gridsim : A toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for grid computing”, The Journal of Concur-
rency and Computation: Practice and Experience (CCPE). �� , 13–15, 2002.

[10] LEGRAND, MARCHAL , CASANOVA, “ Scheduling distributed applicaitons: The simgrid
simulation framework”, in Proceedings of the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2003.


