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RESUME. Une fonction de hachage cryptographique est une procédure déterministe qui compresse
un ensemble de données numériques de taille arbitraire en une chaine de bits de taille fixe. Il existe
plusieurs fonctions de hachage : MD4, MD5, HAVAL, SHA... Il a été reporté que ces fonctions de
hachage ne sont pas sécurisées. Notre travail a consisté a la construction d’'une nouvelle fonction de
hachage basée sur deux contraintes : la premiére vient des fonctions de hachage classique telles que
MD4, MD5, SHA, HAVAL... et la deuxiéme est basée sur le théoreme de Ryser (I'utilisation des tables
de contingence de dimension 2).

ABSTRACT. A cryptographic hash function is a deterministic procedure that compresses an arbitrary
block of numerical data and returns a fixed-size bit string. There exist many hash functions: MD4,
MD5, HAVAL, SHA... It was reported that these hash functions are no longer secure. Our work is
focused in the construction of a new hash function based on two constraints. The first constraint
comes from the classical hash functions such as MD4, MD5, SHA, HAVAL... and the second one
comes from the Ryser’s Theorem (namely in the use of two-dimensional contingency tables).

MOTS-CLES : Matrices des zéros et des uns, fonction de hachage résistante aux collisions.
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1. Introduction

A cryptographic hash function is a deterministic procedure that compresses an arbi-
trary block of data and returns a fixed-size bit string, the hash value (message digest or
digest). An accidental or intentional change to the data will almost certainly change the
hash value. Hash functions are used to protect the integrity of data or data signature.

There exists many hash functions : MD4, MD5, SHA-0, SHA-1, RIPEMD, HAVAL.
It was reported that such widely hash functions are no longer secure [5]. Thus, new hash
functions should be studied. Data security in two dimensional have been studied by many
authors [2, 4]. In this paper, we propose a hash function based on the difficulty to solve
a problem with two constraints than to solve a problem with only one constraint. The
remainder of the paper is organized as follows. In the next section, we present some pre-
liminaries. Section 3 is devoted to the design of hash function. Concluding remarks are
stated in Section 4.

2. Preliminaries

For any integers a and p such that 0 < a < —1 + 2P, let us denote bin(a,p) the
decomposition of the integer a in base 2 on p positions. In other words :

p—1
bin(a,p) = Tp—1Tp—2... 129 and le x 2 =gq
i=0
2.1. Two-dimensional
Let m and n be two positive integers,and let R = (ry,79,...,7y)and S = (s1, s2, . . .

be non negative integral vectors. Denote by (R, S) the set of all m X n matrices A =
(ai;) satisfying

ai;j =0or 1 for i=1,2,...,m and j=1,2,...,n;

n
E aj; =1 for 1 =1,2,...,m;
Jj=1

m
Zaij =s; for 5=1,2,...,n.
i=1

Thus a matrix of 0’s and 1’s belongs to (R, S) provided its row sum vector is R and
its column sum vector is S. The set 2(R, S) was studied by many authors [1, 7]. Ryser
[7] has defined an inferchange to be a transformation which replaces the 2 x 2 submatrix :

1 0
BO:(O 1)

of a matrix A of 0’s and 1’s with the 2 x 2 submatrix

0 1
m= (Vo)
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If the submatrix By (or By) lies in rows k, [ and columns wu, v, then we call the inter-
change a (k, [; u, v) -interchange. An interchange (or any finite sequences of interchanges)
does not alter the row and column sum vectors of a matrix. Ryser has shown the following
result.

Theorem 1 /7] Let A and A* be two m and n matrices composed of 0’s and 1’s, posses-
sing equal row sum vectors and equal column sum vectors. Then A is transformable into
A* by a finite number of interchanges.

Subsequently, for any n € N, we define the following functions :
fo(n) = [Hogs(n +1)] fi(m) =20 % fo(n)
fa(n) =n?
Let us consider a matrix A € {0,1}™*" € A(R, S), i.e. its row sum vector R is such

that R € {0,1,2,...,n}"™ and its column sum vector S is such that S € {0,1,2,...,n}".
We define the function g; from {0, 1}"*™ to {0, 1}/1(") as follows :

g1(n, A) =bin(R(1), fo(n))[|bin(R(2), fo(n))[[ .. . [[bin(R(n), fo(n))|
bin(S(1), fo(n))l[bin(S(2), fo(n))I] .. - [[bin(S(n), fo(n))
where || denotes the concatenation. We note | M| the length of the chain (or message) M.

The size of A and g1(n, A) in terms of bits are respectively f2(n) and f1(n). It is easy to
verify that g; is a compression function for n > 7.

Let us define :

— the function Vect M at which takes as input a vector Vect of size n? and returns as
output an equivalent matrix A of size n X n.

— the function M atV ect which takes as input a square matrix A of order n and returns

as output an equivalent vector Vect of size n?.

Let us consider a vector = € {0, 1}”*”2, we define the function go from {0, 1}1’X”2 to
{0, 1}/1(M)xP g5 follows :

g2(n, ) =g1(n, Vect Mat(x[1..n%],n))||g1 (n, Vect Mat(x[1 4+ n?..2n*],n))|| .. .||
g1(n, VectMat(z[1 + (i x n?)..(i +1) x n?],n))||...]|
g1(n, VectMat(z[l + ((p — 1) x n?)..p x n?],n))
where z[i..j] denotes the concatenation of the elements at positions ¢,¢ + 1,7 +
s, — 1 jofz,ie.
afi..g) = alill|eli + 1]|[fi + 2| ... |l2lj — 1] (4]

Comment : Let us consider two vectors C' and D of size n? such that g>(n,C) =
g2(n, D), then by application of Theorem 1, we deduce that Vect M at(n, C) is transfor-
mable into VectMat(n, D) by a finite number of interchanges. In fact, by definition, g,

2

uses a concatenation of results from ¢, . In this case, g1 (n,VectMat(n,C)) = g1 (n,VectMat(n,D))

and therefore C and D have equal row sum vectors and equal column sum vectors.
The conditions require to have a collision on g» on two inputs are not necessarily the same
as for classical hash function : MD4, MD5, SHA-0O, SHA-1, RIPEMD, HAVAL.
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3. Design of hash function

3.1. Explanation of the idea
Example 1 :

In page 175 of paper [1], Brualdi gives the example of the following three matrices :

1 1 0 1 1 0 1 1 0
A1 == 1 1 0 5 A2 = 1 0 1 3 A3 = 0 1 1
0 0 1 01 0 1 00
which belongs to (R, S) where R = S = (2,2,1).

It is easy to verify that :

SHAl(MatVect(A1,3)) = SHA1(110110001) = 6e3dald74147c¢a5d09413748e0bf6345¢375a f 3e
SHA1(MatVect(As,3)) = SHA1(110101010) = 7a481817a1014d06514de82¢23¢99d219e178b8a
SHAl(MatVect(As,3)) = SHA1(110011100) = 4fbb6a6b6429262 f8b62a93ed9Ib2 f9b26bb7713d

It is easy to verify that :

if i # j then SHAL(MatVect(A;,3)) # SHAl(MatVect(A;,3)) (1

In his thesis Bart Van Rompay [6] presents some cases of attacks of the classical hash
functions :

Attack of MDS5 (see page 72 of [6])
Dobbertin [3] demonstrates that collisions are found on two messages blocks {WV;} and

{WJ/ } (0 < j < 15) with a small difference in only one of the words :

Wi, = Wig + 1559 )
W =W, (j # 14) ©)

Attack of HAVAL (see pages 76 and 77 of [6])
It is wrote in page 77 of [6], "we find such a collision for two messages blocks with a
small difference in only one of the words :"

WQ,S =Wos+1 (€]
W, =W (j # 28) Q)

Collision are found on function g, if the two matrices have equal row sum vectors
and equal column sum vectors. From the Example 1 above, we see that classical hash
functions are not dependent of the theorem of Ryser.

Our design of a new hash function is based on the following facts :

— The condition defined by Ryser’s Theorem is sufficient to attack the compression
function g

— The condition defined by Ryser’s Theorem is not sufficient to attack the classical
hash function such as : MD5, SHA-0, SHA-1, RIPEMD, HAVAL, ...
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3.2. Construction of a new hash function

Let us note H; a classical hash function such as : MD5, SHA-0O, SHA-1, RIPEMD,
HAVAL... From a hash function H;, we build a new hash function Hs as follows :

char xHs (int n, int Pos, File *x)
1 :intlength;
2:File *y;
3:length «— size(x)
// We pad x such that the size of y is the least multiple of n?
4 1y « x[|1]|0%||bin(length, Pos)
// Pos represents the number of bits on which the length of x is
/I decomposed in base 2
5 : return Hy(g2(n,y)||z)
End

Remark 1 : The value of Pos depends on H; and n. n is a natural integer greatest or
equal to 7. Let A denote the maximum number of bits used in the representation of any
input z of the function H; . From the fact that for n > 7, go is a compression function, we
can define Pos as follows :

Pos = )\—2.

3.3. Security of the function H,

After the presentation of the hash function Hs, we now study in this subsection some
attacks on Hs.

First Preimage attack :

Let us suppose that for an image y, we have find = such that Hy(n, Pos,z) =y, i.e.

Hi(z) =y (6)
z = ga(n,v)||z @)
v = 2[|1]|0%||bin(|z|, Pos) (8)

The constraints defined by Equations (7) and (8) imply that First Preimage attack on
H, is not weaker to solve than First Preimage attack on H;.
Let us note S1(n, Pos,y) and S2(y) the sets defined as follows :

S1(n, Pos,y) = {x|Hz2(n, Pos,x) = y}
S2(y) = {z[H:1(z) = y}

From the constraints defined by Equations (7) and (8), we deduce that it is possible
that :

S2(y) € S1(n, Pos,y).
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Second preimage attack :

We have an element 1, we find x5 such that :
Hy(n, Pos,x1) = Ha(n, Pos,x2)
To solve Equation (9), from an element w; , we have to find ws such that
Hy(wy) = Hy(wz)

i.e., we have to find x5 such that :

wy = g2(n, y1)||z1

9U1||1H0d1 [|bin(|x1|, Pos)

Y1
wy = ga(n,y2) |22

y2 = w2|[1]]0%[|bin(|z2|, Pos)

©)

(10)

(1)
12)
13)
(14)

The constraints defined by Equations (11) and (13) imply that Second Preimage attack

of H» is not weaker to solve than Second Preimage attack of H;.
Let us note S3(n, Pos, z1) and S4(z1) the sets defined as follows :

S3(n, Pos,x1) = {x2|Ha(n, Pos,x1) = Ha(n, Pos,x9)}
S4(.’E1) = {ZL’Q|H1(£L’1) = Hl(x2)}

From the constraints defined by Equations (11) and (13), we deduce that it is possible

that :
S4(x1) € S3(n, Pos,x1)

Collision :

We want to find two elements x; and x5 such that :
Hy(n, Pos,x1) = Ha(n, Pos,xs)
i.e. we have to solve the following problem : find =1, x2, 21, 25 such that :
Hq(z1) = H1(22)
z1 = ga(n, y1)l|71
y1 = @] [1]0% ||bin(|21|, Pos)
z2 = ga(n, ya)||z2

y2 = @2|[1]]0%[[bin(|z2|, Pos)

5)
(16)
a7
(18)
19)

The constraints defined by Equations (16) and (18) imply that Collision attack of H>

is not weaker to solve than Collision attack of H;.
Let us note S5(n, Pos) and S6 the sets defined as follows :

S5(n, Pos) = {(x1,x2)|Ha(n, Pos,x1) = Ha(n, Pos,x2)}
56 ={(z1,22)[H1(21) = Hi(22)}
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From the constraints defined by Equations (16) and (18), we deduce that it is possible
that :
S6 ¢ S5(n, Pos).

Remark 2 : From the fact that Ha(n, Pos, x) has the following form
HQ(TZ’?POS?I) = Hl(QQ(nvy)Hx)
y = a[[1]|0?||bin(|z|, Pos)
ly/=0 (mod n?) (20)

Based on the three attacks and the above remark, we can easily deduce that any attack on
H> is not weaker to solve than the same attack on H;.

Example 2 :

Let us consider the two following texts x1 and x2 such that MD5(x1) = MD5(x2).

21 =d131dd02c5ebeecd693d9a0698a f f95¢
2 fcabb8712467eab4004583eb8 fHT f89
55ad340609 f4b30283e488832571415a
085125e8 f7cdc99 fd9I1dbdf280373chb
d8823e3156348 f5baecbdacd436¢919c6
dd53e2b487da03 fd02396306d248cda0
€99 33420 f577ee8ce54b67080a80d1e
c69821bcb6a8839396 f965206 f f72a70

22 =d131dd02c5ebeecd693d9a0698a f f95¢
2 fcabb50712467eab4004583eb8 b7 89
55ad340609 f40630283e4888325 f1415a
085125e8 f7cdc99 fd91dbd7280373c5b
d8823e3156348 f5baebdacd436¢919c¢6
ddb3e23487da03 fd02396306d248cdal
€99 33420 f577ee8ce54b67080280d1e
¢69821bcb6a8839396 f965ab6 f f72a70

It is easy to verify that

MD5(x1) = MD5(x2) = EFE502F 744768114 B58C'8523184841F'3
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By computation, we obtain :
Hy(16,62,21) = E8B4841671FF51D054071EB31BB03F1A
and
H5(16,62,22) = 179CC5AFA8A2EA1BC0CC37TCF2F9CFD3D

It is easy to see that : Ho(16,x1) # H2(16,22) even when M D5(x1) = M D5(x2).

Remark 3 : In the definition of the function Hs, if we replace the line 5 by the follo-
wing

return Hy(g2(n,y) & x)

then we obtain another compression function. In this case, we can define Pos as follows :

Pos = A.

4. Conclusion

From a hash function H;, we have build a new hash function H5 from which First
Preimage attack, Second preimage attack and Collision are not weaker to solve than for
the hash function H; . This result is obtained by adding a new constraint in the resolution
of the attacks. In general, solve a problem with two constraints is not weaker than solve
the same problem with one constraint.
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