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Data assimilation methods are a way of combining different sources of information:
observations and numerical models according to error statistics on these sources. These
methods have lead to strong improvements in the operational context of weather or ocean
forecast. Data assimilation methods can be divided into two groups [1]. First, sequential
methods are based on the Kalman filtering approach and make the state vector evolve in
time along with its error statistics. Then, variational methods are based on optimal con-
trol techniques and minimize the distance between the model trajectory and observations
according to a cost function J. We will focus on the 4D-variational data assimilation
(4D-var), introduced by LeDimet and Talagrand in 1986 [4].

Both methods have huge computational costs and have to be simplified for operational
purposes. For this reason, multigrid methods are attractive. In variational data assimila-
tion, assuming X is the control vector, the necessary condition of optimality is given by
the Euler-Lagrange equation [,J = 0. In this paper, the multigrid methods are used for
solving this resulting system.

In the optimal control framework, several attempts have been made to apply multigrid
methods, either for linear or non linear optimization ( [8], [7], [6]). [6] focuses on the
control of the initial condition for a linear advection equation with a specific cost function
and discretization scheme that makes the problem really well suited for multigrid meth-
ods.

In this paper, we present multigrid methods in the general case of linear systems in section
2. In section 3, we apply multigrids on a data assimilation problem characterized by a lin-
ear advection equation and a cost function associated with a typical regularization term.
Additionally, in section 4, using Fourier analysis, we study how discretization errors in
the numerical model can alter the efficiency of the coarse grid correction step.
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Let X/ Be the solution of the following linear system:

AxtE=g onQ [1]

Let X be an approximation of X-dnd 8xo = X5 Xq the error.

The residual r, given by r = g — AXy, satisfies the residual equation
AdXg =T (2]

Multigrid methods use different levels of grid resolution to find an efficient solution of
equation [1]. In the following, for sake of clarity, we restrict ourselves to a two-level
multigrid method. The superscript ¢ (resp. T) stands for the coarse (resp. fine) grid.

To exchange informations between the two grids, we use a restriction operator I and an

interpolation or prolongation operator Icf . We denote by A° and A/ the discretizations of
A and by g€ and g/ the right hand side.
Knowing this, the algorithm can be introduced:

(D00 0000 k OO0 00C0oIooooan XI 100 000 Dooo 0orCOo oo Xg
(I 0000 v4 0000 D000 O0I000 00000 000000000000 OM - C0000 100 0100000 01 AT

[ [
xf = 1—oMIAT X +oM~1gf o 0,1 (3]
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Xg, after CGC _ | — IE(AC)—IIEAf Xg + IE(AC)—llggf [5]
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|
Knowing the fine grid solution, Xg , which is also a fixed point of the iteration [5], the
evolution of the error during the coarse grid correction (step 2) can be written:

£ —
Xg' after CGC _ Xg = ngrid(xg - Xg I? [6]
where
Kingrid = 1 = I{(A9) T IFAT 7]

If the operator A is elliptic, relaxation methods applied on the fine grid, like Jacobi or
Gauss-Seidel methods, will efficiently remove high frequencies in the error 6Xq (see
[10]). After some iterations of relaxation methods on the fine grid, the remaining low
frequencies of the error can be passed to a coarser grid on which they appear as higher
frequencies.

I DDt Loidboo ot DOt 00d Woodetoa

In a variational data assimilation method, the aim is to minimize a given cost func-
tion J(X() playing with the control vector Xy. The cost function measures the distance
between a set of observations y° and the model as follows

1 L1 1
Jo) =3 MHilx0) =y [k + 5 0% — % [l [8]
1

The first term measures the misfit to data while the last term is a regularization one, Xp
being the background or current estimate of the initial state.
H; is an operator that includes both the model trajectory My j from time O to time i and
the observation operator that goes from model space to the observations space. B is the
associated background error covariance matrix and R; the observational error covariance
matrix.
In many cases, as operational data assimilation for ocean or meteorological models, the
resulting system is non-linear. But in this preliminary study, we will restrict us to linear
system to understand the behavior on elementary equations.

Let X} Be the minimum of the cost function : X% min J(Xo).
Xo

Then, a necessary condition for X tb be a minimum of J (Xo) is the Euler equation :

Dod (X5)'=0 [9]
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Variational data assimilation ([4] [5], [1]) is based on a minimization procedure, that
requires the knowledge of the gradient of J which itself requires integration of both direct
and adjoint models. As one integration of an operational model is already of a high cost of
resolution, the solution of the data assimilation problem can then become very expensive.
Our objective is to alleviate this cost by solving the Euler equation [9] using a multigrid
method. We base our study on the work of Nash [7], and Ta’asan [9] who have studied
some optimal control problems solved by multigrid methods.

In order to relate this problem to the one introduced in the previous section, we write the
Euler equation under the form A(xg) = g where A = [LTdnd g = 0.

Then the convergence factor of coarse grid correction can be expressed as:

Kmgrid = I = 1§ (H) 7 IEHT [10]
where H is the hessian of J: H.0x§ = LI(@®x5).

I 0DuidioboLn fiobbbo [ ooUiod bootod

In this section, we study the application of the previously described method on a linear
advection equation. First, the continuous and discrete problems are introduced, then we
make a Fourier analysis of the convergence properties of the coarse grid correction step.

LI 4obon o ol oo

We use a elementary advection equation on a one dimensional domain Q

Oix+Ccoxx=0 withc>0

x(%,t = 0) = x0(X) [t

with periodic boundary conditions .
We suppose that the observation data set y° is available continuously (the observation
operator is identity).
We suppose that the observational error covariance matrix R is a diagonal matrix with a
constant variance equal to G2 on fine and coarse grids.
The cost function [8] makes use of the background error covariance matrix B. In typical
applications, B is representative of errors correlated with a Gaussian shape function. In
that case, the regularization term can be approximated using the spatial derivatives of the
initial state (see [1]), Gg being the error variance and | the correlation length.
The continuous cost function is given by
1 . g ]
J(x0) = = XX, t) —y° PH v — [xb — xp PH O3 C(xd — xp) (2T [12]
202 2 202

B is a positive constant that puts more or less weight on the regularization term.
Using the continuous solution of equation [11], x(X,t) = xo(X — ct), the hessian of J

can be derived :
1 1 111

T d* Ba?
H=— 1+ 1+14 herey = 220 1
02 2 a0 vherey To? [13]
HHK) the symbol of the Hessian defined by H(e™**) = Hi{)e** is given by the expres-
sion: 1 IFI
T 1
M) = — 1+ T 1%¢ [14]
00 2'
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With y = 0, that is to say if the cost function does not include the regularization term,
then the hessian does not depend on K. The optimization method will have a similar be-
havior at all frequencies so that the multigrid method will loose its theoretical efficiency.
However for practical uses, the regularization term is needed and so Y is stricly positive.
In that case, an elliptic operator is obtained.

Equation [11] is discretized using a finite difference method based on a uniform grid
with time step At and space step AX, using an Euler upwind scheme.
We note xJ, the approximation of the value of x(X, t) at X = JAX and t = nAt.

Defining A = cAt/AX the Courant number, the numerical scheme writes:
]

Xhar —Xh = —A xh = [15]
The laplacian [ofthe cost function is discretized using a second order centered scheme.
We use two different grids, Qf  afine grid of resolution AxF =0.1in space and Atf =
AXT /¢ in time, and a coarse one Q° of resolution AXC in space and AtC in time.
The properties of the Euler upwind scheme are well known. It is first order accurate
in space and time and is conditionally stable under the constraint A < 1. By a Taylor
expansion, it can be proved that the numerical solution produced by scheme [15] is a first
order approximation in time and space of the advection equation [11] but is a second order
approximation of the following advection-diffusion equation (modified equation):

Bex + Cxx = [Blx, with [ g (AX — cAt) [16]

Note that for the particular case of A = 1, [3= 0 and the numerical model actually leads
to the true solution.

If A 8 1, [T strictly positive due to the stability constraint 0 < A < 1 and the additional
term on the right hand side corresponds to a diffusion term.

Using the same cost function with the advection-diffusion equation gives us a new ex-
pression of the Hessian, which is in Fourier space:

1—e T B L
= + = 1+1%* 17
M = e 207l o
We give its Taylor expansion at order 4 :
—1 Iﬁ 1
T T [BTr2k* (I
Had) = - - KT, + o Tk [18]
02 2 3! 21

This expression shows that at large scales there is a balance between artificial numerical
diffusion and the regularization term.

LI 0000l Moo

Brandt, 1984 [2] shows that h-ellipticity for the system is required for the multigrid
methods to be efficient. Elliptic problems have the properties that high frequencies are
local. An elliptic operator would react to a high-frequency change by a local high fre-
quency. In our case, the Hessian needs to be elliptic so the following inequality must be
satisfied in the discrete case:

1 )
H@)| =  Cjsinkax/2)3, C; =0.
=0

In the following, we study the convergence factor of one coarse grid correction step.
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The hessian of data assimilation system depends on the numerical model we use, on
the equation we study, and on the cost function we choose. We have briefly studied
the behavior of the Hessian for low frequencies (k near of 0). To complete this study,
we numerically compute the inverse of the discrete hessian according to the mode k,
|H|%I The two parameters 7' and L are given by 7" = 1 and L = 4. Values of

|H%hown here are to the true discrete values, the expression [17] being only valid
at large scales kAz [11

Figure 1 shows on the left the influence of y on the modulus of the inverse of the fine grid
Hessian for A = 0.9 and [ = 1 and on the right the influence of A for v = 0.0005 and [ =
1. When the regularization term is omitted (v = 0), the increase of numerical diffusion
makes the model less controllable. Even if we wouldn’t have used multigrid methods, a
regularization term v > 0 makes the fine grid optimization easier and helps the solution
Xo to have physical meaning. With v > 0, at medium scales there is a competition
between the artificial diffusion induced by the discretization and the regularization term.
Even if the Hessian is not truly elliptic, the regularization term also improves its properties
with regard to the convergence of the multigrid process.

I 000 MO0 000 metooo

Assuming we have solved exactly the coarse grid system [4] H®.6x§ = —I§ Eﬂ(xg),
the impact of the coarse grid correction can be studied using the convergence factor [10].
To be efficient for the multigrid process, it should be small at large scales.

We assume here that the spatial and temporal refinement factors are equal to 2. Thus the
value of the Courant number A is the same for the two grids, but numerical diffusion is
twice on coarse grid. The other parameters ( v and [) have identical values on fine and
coarse grids.
The chosen restriction operator corresponds to a full-weighting operator while the inter-
polation operator is linear. Their stencils are given by :

L} L

_ 10 e R
=5 3135 ¢ Ic—lff:'
2

C

In Figure 2, on the left, we plot the convergence factor for different values of v and .
The local maximum we find for low frequencies between [0.2; 0.8] is the same as found on
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the inverse of Hessian and is due to the fact that the regularization term, which damps the

nonellipticity effect, isn’t effective for very low frequencies. Anyway, the low frequencies
are quite better resolved than the high ones and a coarse grid correction step efficiently
reduces the errors at large scales.

In Figure 2, to the right, using y = 0,005, A = 0.9 and | = 1, we plot the convergence
factor of ten high resolution weighted-Jacobi relaxation (see equation [3] with © = 2/3).
We compare it to the convergence factor of the all-multigrid algorithm combining the
convergence factor of the relaxation method on fine grid (V1 = v = 5) with Kingrig. The
multigrid method removes much better the low frequencies than monogrid does, which
emphasizes the coarse grid correction efficiency.

(1 J0bOooitg

We have introduced a multigrid algorithm for solving an idealized 4D-var problem.
The 4D-var resolution has a high computational cost that prevents its use in an efficient
way for operational context. The multigrid methods are a way of solving a system solver
by using grids at coarser resolutions. Following Nash [6], the idea was to adapt the multi-
grid methods to data assimilation to low its cost of resolution. We have studied the effi-
ciency of the coarse grid correction according to the parameters of the cost function and
show the importance of defining a well suited cost function.

More precisely, we have shown that the regularization term is important for two reasons,
the ellipticity of the hessian and the regularization of the solution xo to be found. Dis-
cretization errors can also have an impact on the coarse grid correction step.

Obviously, much work still has to be done. Operational models in ocean or weather fore-
casts can have strong non-linearities. Fortunately, multigrid methods can be adapted to
non-linear systems using the Full-Approximation Scheme (FAS) [10]. Further efforts will
be made to adapt it on a non-linear 4D-var.

Moreover one variant of 4D-var method, used operationally, is the incremental 4D-Var
given by Courtier [3]. In this approach, the model is linearized around the current es-
timate, like in a Gauss Newton optimization method. In the multi-incremental method
[11], additionally, the increment is searched in a lower dimensional space, typically cor-
responding to a grid with coarser resolution. Because the multi-incremental approach
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makes use of grids of different resolutions, it is linked in some way to multigrid methods.
The idea is to experiment the multigrid approach on a non-linear 4D-var and compared
its results to the incremental and multi-incremental 4D-var method.
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