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Σ0

t ΩF
t

t ∈ [0, T ]
v(t) : ΩF
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p(t) : ΩF
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Ω̂F

At, t ∈ [0, T ]
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t \ Σt, At(Ω̂
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T ∈ Ω̂F
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∂At

∂t
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∂t
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− 2µF∇ · ǫ (v) +∇p = f

F ΩF
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∇ · v = 0 ΩF

t × [0, T ]

σF
n
F = hin Σ1 × (0, T ]

σF
n
F = hout Σ3 × (0, T ]

v = 0 Σ2 × (0, T ]

v(X, 0) = v
0(X) ΩF

0

σF = −pI2 + 2µF ǫ(v) ǫ(v) =
1

2

(
∇v + (∇v)T

)
f
F = (fF

1
, fF

2
)

hin hout Σ1 Σ3

ρF µF

ρS
∂2u

∂t2
−∇ · σS = f
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u = 0, Γ0 × (0, T ]

σS
n
S = 0, Γ1 × (0, T ]

u(X, 0) = u
0(X), ΩS

∂u

∂t
(X, 0) = u̇
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ρS > 0 µS , λS

f
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1
, fS
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(
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E(u)
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2

(
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v(X + u(X, t), t) =
∂u

∂t
(X, t), Σ0 × (0, T ]

(σF
n
F )(X+u(X,t),t)ω = −(σS

n
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ω = ‖ (∇Tu)n
S‖R2 Tu : Γ0 −→ Γt Tu(X) = X + u(X, t)

n
S = (nS

1 , n
S
2 ) Σ0
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n
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v
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F
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n ϑ
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x̂
ϑ
n = 0 ΩF
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◦ · · · ◦ At1 Σn = T(Σ0)
v
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v
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n x = Atn+1
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ŴF
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· ŵF )−

∫

ΩF
n

q̂(∇
x̂
· v̂n+1)

=

∫

ΩF
n

f̂
n+1 · ŵF +
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un, gn u, fS

Fn = (σSnS)(tn) θ
1/4 ≤ θ ≤ 1/2.

WS = {wS ∈ (H1(ΩS))2, wS = 0 Γ0}.

un+1 ∈ WS
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ρS
(
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)
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We mean by semi-implicit the fact that the interface position is computed explicitly,

while the displacements, velocity and pressure are computed implicitly. An optimization

problem must be solved in order to get the continuity of stress at the interface. The stress

F
n+1 = (σS

n
S)(tn+1) is unknown. We approach it by : Fn+1 =

m∑

i=1

ξn+1
i ψi, where

ξn+1
i have to be identified, ψi ∈

(
L2 (Γ0)

)2
are shape functions. (see [7]).

Semi-implicit algorithm

Step 1. Compute the mesh velocity ϑn.
Step 2. Assembling the finite element matrix of fluid problem using the frozen mesh

T n. Get a LU factorization of the matrix.

Step 3. Solve the fluid-structure problem using the fluid mesh T n by BFGS algorithm :

ξn+1 ∈ arg min
ξ∈Rm

J(ξ),

where the cost function J is computed as following :
1) Solve (17) by Newton Method under the load F

n+1 =
∑m

i=1 ξ
n+1
i ψi and get

the displacement un+1.

2) Solve (15) on the mesh T n under prescribed velocity at the interface

v̂
n+1 =

u
n+1 − u

n−1

2∆t
, in order to get the fluid velocity v̂

n+1 and p̂n+1.

3) Compute αi =

∫

Γ0




m∑

j=1

ξjψ
j


 ·ψid s, βi = −

∫

Γ0

(
σF

n
F
)
(X+u(X,t),t)

·ψid s.

4) Set the cost function J(α) =
1

2
‖α− β‖2

Rm .

Step 4. Build mesh T n+1 = Atn+1
(T n) and save T n+1, vn+1, pn+1 given by (14).

The length of Σ1 and of Σ3 is 3 mm, the length of Σ2 is 5 mm. The interface Σ0

is composed by two segments of length 5 mm and an arc of diameter 6 mm. The fluid

viscosity is µF = 0.003 dyn
cm2 , the fluid density is ρF = 1 dyn

cm3 and the volume forces are

f
F = (0, 0)T dyn

cm2 . The prescribe boundary stress on Σ3 is hout(x, t) = (0, 0)T dyn
cm2 and

on Σ1 is hin(x, t) = (103(1 − cos(2πt/0.025)), 0)T dyn
cm2 , if x ∈ Σ2, 0 ≤ t ≤ 0.025

and hin(x, t) = (0, 0)T dyn
cm2 , if x ∈ Σ2, 0.025 ≤ t ≤ T.

The up boundary Γ3 is an arc with diameter 6 mm, the length of Γ1 and Γ2 is 0.3 mm. The

Young modulus is E = 3·106 dyn
cm2 , the Poisson ratio is ν = 0.3, the structure mass density

is ρS = 1.1 dyn
cm3 and the volume force are fS = (0, 0)T dyn

cm2 . The Lamé’s coefficients are

computed by the formulas : λS =
νSE

(1− 2νS)(1 + νS)
, µS =

E

2(1 + νS)

dyn

cm2
.

The numerical tests have been performed using FreeFem++ (see [5]). We have used for

the structure a reference mesh of 60 triangles and 62 vertices and for the fluid a reference



mesh of 1615 triangles and 881 vertices. The compatibility of meshes are not necessary

verified at the interface (see Figrue (3), at the top-left). For the approximation in space

of the fluid velocity and pressure, we have used the triangular finite element P1 + bubble
and P1 respectively. The finite element P1 was employed for the displacements of the

structure.

We show in the Figure (2), the behavior of normal component of WSS at three dif-

ferent points on the interface. Near the inflow section, the maximal value of WSS is around

150 dyn/cm2, near the apex, this value is around 50 dyn/cm2 and near the outflow sec-

tion, the value is about 100 dyn/cm2. The behaviors of the fluid velocity, of the fluid

pressure and of the structure velocity are showed in the Figure (3).

In this paper, a semi-implicit algorithm based on the strategies developed in [9] and

[7] has been used to simulate the fluid-structure interaction in cerebral aneurysm. The

Newton method is used to solve the nonlinear model of the structure. At each time step,

an optimization problem is solved by partitioned procedure based on BFGS algorithm in

order to get the continuity of velocity as well as the continuity of the stress at the interface.
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Normal component of the wall shear stress at three points on the interface.

Fluid-structure meshes, fluid pressure, fluid velocities and structure velocities at

time instant t = 0.040 s.


