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ABSTRACT. We consider a mathematical SIL model for the spread of a directly transmitted infectious
disease in an age-structured population; taking into account the demographic process and the vertical
transmission of the disease. First we establish the mathematical well-posedness of the time evolution
problem by using the semigroup approach [4]. Next we prove that the basic reproduction ratio R0 is
given as the spectral radius of a positive operator, and an endemic state exist if and only if the basic
reproduction ratio R0 is greater than unity, while the disease-free equilibrium is locally asymptotically
stable if R0 < 1. We also show that the endemic steady states are forwardly bifurcated from the
disease-free steady state when R0 cross the unity. Finally we examine the conditions for the local
stability of the endemic steady states.

RÉSUMÉ. Nous considérons ici un modèle mathématique SIL de transmission directe de la maladie
dans une population hôte structurée en âge; prenant en compte les processus démographiques et
la transmission verticale de la maladie. Premièrement, nous étudions le caractère bien posé du pro-
blème par la théorie des semi-groupes [4]. Ensuite, nous montrons que le taux de reproduction de
base R0 est le rayon spectral d’un opérateur positif; et un équilibre endémique existe si et seulement
si R0 est supérieur à l’unité, tandis que l’équilibre sans maladie est localement asymptotiquement
stable si R0 < 1. Nous établissons aussi l’existence d’une bifurcation de l’équilibre sans maladie
quand R0 passe par l’unité. Enfin, nous donnons des conditions nécessaires pour la stabilité locale
de l’équilibre endémique.
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1. Introduction

In this paper we consider a mathematical S-I-L (Susceptibles-Infected-Lost of sight)
model with demographics process, for the spread of a directly transmitted infectious dis-
ease in an age-structured population. The lost of sight class was previously consider in
some papers as [1]. We assume that the infective agent can be transmitted not only hori-
zontally but also vertically from adult individuals to their newborns. There are important
infective agents such as HBV (hepatitis B virus), HIV (humanimmunodeficiency virus)
and HTLV (human T-cell leukemia virus) that can be vertically transmitted. Compared
with the pure horizontal transmission case, so far we have not yet so many results for
vertically diseases in structured populations. In Africa,the vertical transmission of the
disease like HIV is in progression nowadays.

Firstly, the epidemic system is formulated. Then, we will describe the semigroup ap-
proach to the time evolution problem of the abstract epidemic system. Next we consider
the disease invasion process to calculate the basic reproduction ratioR0 [3], then, we
prove that the disease-free steady state is locally asymptotically stable ifR0 < 1. Sub-
sequently, we show that at least one endemic steady state exists if the basic reproduction
ratioR0 is greater than unity. By introducing a bifurcation parameter, we show that the
endemic steady state is forwardly bifurcated from the disease-free steady state when the
basic reproduction ratio crosses unity. Finally, we consider the conditions for the local
stability of the endemic steady states.

2. The model

In this section, we formulate a model for the spread of the disease in a host population.
We consider a host population divided into three subpopulation; the susceptible class, the
infective class (those who take a chemoprophylaxis) and thelost of sight class denoted
respectively byS(t, a), I(t, a) andL(t, a). Let β(a, σ) be the transmission rate between
the susceptible individuals ageda and the infective or lost of sight individuals agedσ.
All recruitment is into the susceptible class and occur at a specific rateΛ(a). The rate
of non-disease related death isµ(a). Infected and lost of sight have additional death
rates due to the diseased1(a) andd2(a) respectively. The transmission of the disease
occurs following adequate contacts between a susceptible and infectious or lost of sight.
r(a) denoted the proportion of individuals receiving an effective therapy in a care center
andφ(a)r(a) the fraction of them who after begun their treatment will notreturn in the
hospital for the examination. After some time, some of them can return in the hospital
at specific rateγ(a). The demographics and epidemiology process of the age-structured
SIL model is given by Figure 1. The basic system (age-structured SIL epidemic model)
with vertical transmission can be formulated as follows by equation (1).







































(

∂

∂t
+

∂

∂a

)

S(t, a) = Λ(a)− (λ(t, a) + µ(a))S(t, a),
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I(t, a) = λ(t, a)S(t, a)− (µ(a) + d1(a)

+r(a)φ(a))I(t, a) + γ(a)L(t, a),
(
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L(t, a) = r(a)φ(a)I(t, a)− (µ(a) + d2(a) + γ(a))L(t, a),

(1)



Figure 1: Epidemiology and demographics process of the model.

with initial boundary conditions
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S(t, 0) =
∫ a+

0
f(a)[s(t, a) + (1− p)(I(t, a) + L(t, a))]da,

I(t, 0) = p
∫ a+

0
f(a)(I(t, a) + L(t, a))da,

L(t, 0) = 0,
S(0, a) = ϕS(a); a ∈ (0, a+),
I(0, a) = ϕI(a); a ∈ (0, a+),
L(0, a) = ϕL(a); a ∈ (0, a+),

(2)

wheref(a) is the age-specific fertility rate,p is the proportion of newborns produced
from infected individuals who are vertically infected anda+ < ∞ is the upper bound of
age. The force of infectionλ(t, a) is given by

λ(t, a) =

∫ a+

0

β(a, σ)(I(t, σ) + L(t, σ))dσ.

Let us write the system in a abstract form. LetX = L1(0, a+)3 with the norm||ϕ||X =
3
∑

i=1

||ϕi||L1 , whereϕ = (ϕ1, ϕ2, ϕ3) ∈ X. It is well known that(X, ||.||X) is a Banach

space. Consider the operatorA : D(A) ⊂ X → X defined byAϕ = (−
dϕ1
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)T ,

whereD(A) is the domain of the operatorA given by
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and the functionF : D(A) → X defined by

F
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Λ− (λ[., ϕ] + µ)ϕ1

λ[., ϕ]ϕ1 − (µ+ d1 + rφ)ϕ2 + γϕ3

rφϕ2 − (µ+ d2 + γ)ϕ3






,

whereλ[., ϕ] ∈ L1(0, a+) is such thatλ[a, ϕ] =
∫ a+

0
β(a, σ)[ϕ2(σ) + ϕ3(σ)]dσ and

W 1,1(0, a+) is a usual Sobolev space. Then the abstract formulation of the system (1)-
(2) is
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dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)),

ϕ(0) = (ϕS , ϕI , ϕL)
T .

(3)

Let us make the following technical assumption:

Assumption 1. β ∈ L∞
+ [(0, a+) × (0, a+)]; f, d1, d2, γ, Λ ∈ L∞

+ (0, a+); µ ∈
L1
loc(0, a

+).

Lemma 1. On assumption 1, the operatorsA andF are well defined.

3. Main results

Lemma 2. The operatorA is generator of aC0-semi-groupe of linear bounded operators
{T (t)}t≥0 such that

T (t)ϕ(a) =

{

ϕ(a− t) si a− t ≥ 0
C(t− a) si a− t ≤ 0

for t ≤ a+,

T (t)ϕ(a) = 0R3 for t > a+,

whereC(t) = (C1(t), C2(t), 0) is the unique solution of the following Volterra integral
equation

C(t) = G(t) + Φ(t, C),

with

G(t) =

(

∫ a+

t

f(s)(ϕ1(s− t) + (1− p)ϕ2(s− t) + ϕ3(s− t))ds ; p

∫ a+

t

f(s)ϕ2(s− t)ds ; 0

)

,

Φ(t, C) =

(∫ t

0

f(s)(C1(t− s) + (1− p)C2(t− s))ds ; p

∫ t

0

f(s)C2(t− s)ds ; 0

)

.

Proposition 1. [4] The domainD(A) of operatorA is dense inX andA is a closed
operator.

Let us noteX+ = (L1
+(0, a

+))3 the nonnegative cone ofX. From the definition of
T (t) the following proposition holds.

Proposition 2. The spaceX+ is positively invariant by{T (t)}t>0.

Proposition 3. The trajectories of the system (1)-(2) are forward bounded.



Lemma 3. On assumption 1, the non linear termF is continuous and locally Lipschitz.

We can now prove the existence and uniqueness of the solutionof (3).

Theorem 1. For any initial condition onX, the semi-linear problem (3) has a unique
mild solution on[0,+∞).

Let us notel(a) = exp
(

−
∫ a

0
µ(s)ds

)

the average lifetime of individuals at agea.

Assumption 2. The functionsf andl satisfy
∫ a+

0
f(a)l(a)da < 1.

Proposition 4. On assumption 2, the system (1)-(2) has a unique Disease FreeEquilib-
rium (DFE),ϕ0 = (S0, 0L1 , 0L1), whereS0 is given by
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)

da,

S0(a) = l(a)

[

S0(0) +

∫ a

0

Λ(s)

l(s)
ds

]

for 0 ≤ a ≤ a+.

(4)

In the following, we suppose that lost of sight individuals do not go back almost in a
health center. Hence, the following assumption holds:

Assumption 3. γ(a) ≈ 0 for almosta ∈ (0, a+).

Thebasic reproduction ratioR0 is given byR0 := r(H0); the spectral radius of the

operatorH0 defined byH0(ψ)(a) =
∫ a+

0
χ(a, s)ψ(s)ds, where

χ(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη

+
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ

and

χ4(a) =

[

S0(a)

l(a)

∫ a+

0

f(σ)l(σ)dσ − S0(0)

]

∫ a+

a

f(s) [χ21(s, a) + χ31(s, a)] ds,
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,

χ21(a, s) = l(a)
Γ1(a)

Γ1(s)
; χ31(a, s) = l(a)

∫ a

s

Γ2(a)Γ1(η)

Γ2(η)Γ1(s)
r(η)φ(η)dη,

A22(a) = l(a)Γ1(a) ; A32(a) = l(a)Γ2(a)

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds,

Γ1(a) = exp

(

−

∫ a

0

(d1(s) + r(s)φ(s))ds

)

; Γ2(a) = exp

(

−

∫ a

0

(d2(s) + γ(s))ds

)

.

As an important case, we here briefly consider the proposition mixing assumption, that is,
the transmission rateβ can be written asβ(a, s) = β1(a)β2(s) [2]. In this case we can

define the basic reproductionR0 explicitly by R0 := r(H0) =
∫ a+

0
χ(s, s)ds. Here we

adopt the following technical assumption:



Assumption 4. The transmission coefficientβ satisfies the following:

1) β ∈ L1
+(R× R) such thatβ(a, s) = 0 for all (a, s) /∈ [o, a+]× [0, a+].

2) lim
h→0

∫ +∞

−∞
|β(a+ h, ξ)− β(a, ξ)|da = 0 for all ξ ∈ R.

3) There exists a nonnegative functionε such thatε(s) > 0 for s ∈ (0, a+) and
β(a, s) > ε(s) for all (a, s) ∈ (0, a+)2.

Under assumption 4 we have the following results:

Proposition 5. 1) If R0 ≤ 1, the DFE defined by (4) is the unique equilibrium of
the system (1)-(2).

2) If R0 > 1, in addition to the DFE, the system (1)-(2) has at least one endemic
equilibrium(S∗, I∗, L∗).

For the stability of the endemic equilibrium(S∗, I∗, L∗), let us assume that:

Assumption 5.
∫ a+

0
(d1(σ) + r(σ)φ(σ))dσ ≤ exp

(

−
∫ a+

0
λ∗(σ)dσ

)

; whereλ∗(σ) =
∫ a+

0
β(σ, η)(I∗(η) + L∗(η))dη.

Therefore, we have the following local stability result of our model:

Proposition 6. 1) IfR0 = r(H0) < 1, the unique equilibrium (DFE) of the system
(1)-(2) is locally asymptotically stable.

2) If R0 = r(H0) > 1, the DFE is instable.

3) If R0 = r(H0) > 1, the system (1)-(2) (in addition to the DFE) has at least one
endemic equilibrium (EE). If morer(V ∗

0 ) < 1 and assumption 5 holds, the EE is locally
asymptotically stable.

WhereV ∗
0 is a positive linear operator.

4. Numerical simulations

We adopt a numerical finite difference scheme. For the numerical simulations, the
parameters of our system are arbitrarily chosen.
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Figure 2: (2a) Distribution of Susceptible individuals of Eq.(1)-(2) for arbitrarily chosen
parameters such thatR0 < 1. (2b) Distribution of Susceptible individuals of Eq.(1)-(2)
for arbitrarily chosen parameters such thatR0 > 1.
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Figure 3: (3a) Dynamical of Uninfected newborns individuals of Eq.(1)-(2) for arbitrarily
chosen parameters such thatR0 < 1. (3b) Dynamical of Uninfected newborns individuals
of Eq.(1)-(2) for arbitrarily chosen parameters such thatR0 > 1.
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Figure 4: (4a) Dynamical of Infected newborns individuals of Eq.(1)-(2) for arbitrarily
chosen parameters such thatR0 < 1. (4b) Dynamical of Infected newborns individuals
of Eq.(1)-(2) for arbitrarily chosen parameters such thatR0 > 1.
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Figure 5: (5a) Dynamical of Infected individuals of Eq.(1)-(2) for arbitrarily chosen pa-
rameters such thatR0 < 1. (5b) Dynamical of Infected individuals of Eq.(1)-(2) for
arbitrarily chosen parameters such thatR0 > 1.
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Figure 6: (6a) Distribution of Lost of sight individuals of Eq.(1)-(2) for arbitrarily chosen
parameters such thatR0 < 1. (6b) Distribution of Lost of sight individuals of Eq.(1)-(2)
for arbitrarily chosen parameters such thatR0 > 1.

5. Conclusion

In this paper, we consider a mathematical model for the spread of a directly transmit-
ted infections disease in an age-structured population with demographics process. The
disease can be transmitted not only horizontally but also vertically from adult individuals
to their children. The dynamical system is formulated with boundary conditions.

We have described the semigroup approach to the time evolution problem of the ab-
stract epidemic system. Next we have calculated the basic reproduction ratio and proved
that the disease-free steady state is locally asymptotically stable ifR0 < 1, and at least
one endemic steady state exists if the basic reproduction ratioR0 is greater than the unity.
Moreover, we have shown that the endemic steady state is forwardly bifurcating from the
disease-free steady state atR0 = 1. Finally we have shown sufficient conditions which
guarantee the local stability of the endemic steady state. Roughly speaking, the endemic
steady state is locally asymptotically stable if it corresponds to a very small force of in-
fection.

However the global stability of the model still an interesting open problem. Moreover,
biologically appropriate assumptions for the unique existence of an endemic steady state
is also not yet know.
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