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ABSTRACT. In mathematical epidemiology, the basic reproduction number Ry is the average number of new infec-
tions produced by an infective individual also called of generation 1, introduced in a completely susceptible population.
If Ro < 1, then the disease dies, whereas for Ry > 1, the infection can invade the host population and persist. For SIR
contact networks, one generally approximates R by the average number R» 3 of infective individuals of generation 3
produced by an infective of generation 2. We give here a simple analytic formula for R2 3 on cellular networks. Simu-
lations on two dimensional networks with von Neumann and Moore neighbourhoods, show that R2 3 = 1 corresponds
to an epidemic threshold, and this confirms the good quality of Rz 3 as approximation of Ry .

RESUME. En épidémiologie mathématique, le taux de reproduction de base Ry est le nombre moyen d'infections
secondaires produites par un individu infecté introduit dans une population susceptible. Si Ry < 1, alors la maladie
disparait, alors que pour Ry > 1, I'infection peut envahir une fraction non nulle de la population. Pour les réseaux de
contact de type SIR, Ry est généralement approximé par le nombre moyen R 3 d’infectés de génération 3 produits
par un infecté de génération 2. Nous proposons ici une formule analytique simple de Rz 3 pour les réseaux cellulaires.
Les simulations faites sur des grilles de dimension 2, & voisinage de von Neumann et de Moore, montrent que Rz 3 = 1
correspond a un seuil épidémique, ce qui confirme la bonne qualité de R 3 comme approximation de Ry.
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1. Introduction

The classical SIR epidemiological model subdivides theupattjpn into three groups called com-
partments. Compartment S contains susceptible individ@mpartment | corresponds to the class of
infective individuals who can transmit the disease whery theeve adequate contacts with susceptible
individuals. Compartment R corresponds to recovered iddals, i.e. who are immunized, dead or
are no longer in contact with susceptible individuals. Asgrgation of SIR and related models may be
found in [4].

Basic compartmental or mean field epidemiological modedet@n systems of ordinary differential
equations, assume that individuals in the population arf®umly mixed. Such models usually have
a Disease Free Equilibrium (DFE) corresponding to the siftbe population in the absence of the
disease. In most cases, there is a threshold paraiigt&urch that :

—if Ry < 1, then the DFE is locally asymptotically stable, and the aligsecannot invade the pop-
ulation, as the consequence of the introduction of a smatibear of infected individuals when the
population is at DFE ;

— on the contrary if?y > 1, then the DFE is unstable and invasion is possible.

The mathematical definition ok, has a nice interpretation in terms of epidemiology. IndeRgl,
coincides with the average number of secondary infectioadyced by a typical infective individual
introduced in a completely susceptible population.

There are several approaches for incorporating heterigenepidemiological models. In some
models, the space is discrete and consists of a number dfgsatehich are supposed to be well mixed.
These patches represent social units with movements ofiéhuils between patches. This leads to a
multi-patch, multi-compartment approach that has beed fdnstance to propose a generalization of
the classical Ross-MacDonald model which describes thardjes of malaria [1].

In this paper, we consider contact networks, where an edyé¢iween two vertices means that
the corresponding individuals make frequent contacts @dith other. In this context, the question is to
study how the properties of the infectious disease and t@dgical properties of the contact network
combine to determine the propagation of the infectiousadisén the population. Andersson [5] has
studied SIR epidemics on random networks. He assumed teatdighbours of a given node were
randomly distributed and that, with high probability, tweighbouring nodes did not have common
neighbours. With these assumptions, he showedRpat p(<<dd2>> — 1), where< d > is the average
vertex degreeg d? > is the average value of the square of the vertex degreeg énthe spreading
rate of the infectious agents.

In such SIR networks, the qualitative behaviour of the dyicans captured by the total number
of individuals who experience the disease before the endeoépidemic. The threshold phenomenon
observed on the total size of the epidemic is then relatedegdasic reproduction number as follows :
if Ry < 1, then following the introduction of few infective individils in a susceptible population, the
total size of the epidemic remains small, while #y > 1, the proportion of this total size is significant
with positive probability. In this context the basic repuation numberRy is generally approximated
by the average numbek, 3 of new infections produced by a second generation infedtid&idual,
following the introduction of one infectious individual mcompletely susceptible network.

Pastor-Satorras and Vespignani [7] have studied SIS $edaaetworks, i.e. networks where the
distribution of probabilities that a node has exactly i idigurs follows a power lawP (i) = i~*, with
2 < «a < 3. They have shown that, as the size of the network tends tatinfauch networks are very
weak in face of SIS infectious diseases, and present artigéfepidemic threshold that is vanishing in
the limitn — oo, whatever is the spreading rat®f the infectious agents.




Later, Piccardi and Casagrandi [2] have shown that the ptiegeexhibited by Pastor-Satorras and
Verpignani were strongly linked to the underlying simpl&Siompartmental model. More precisely,
they have shown that scale-free networks can be unable pmeLgiseases "with non linear force of in-
fection whose prevalences can abruptly collapse to zertewleicreasing the transmission parameters".

We are interested here in the particular case of cellulavors, i.e. regular and locally connected
arrays with nodes indexed [&#, and for which there is a finite s&t = {v4, ..., v, } called the neigh-
bourhood index, such that each nadis connected ta + vy, ..., u + v,.

This paper is organized as follows. Section 2 presents tithadgroposed recently by Aparicio
and Pascual for the computation of an approximate valug.qf, together with a refinement. Section
3 gives a simple analytical formula fdtz 5 on cellular SIR networks. Section 4 presents, for the von
Neumann and Moore neighbourhoods on two-dimensional sregperiments that confirm the good
quality of Ry 3 as approximation of?y. In section 5 we conclude and give some directions for future
work.

2. Approximate formulas for R, 3 on finite cellular networks

A finite cellular network is a couple NZ$ , V'), wheres and L are positive integer&,;, is the set
of integers modulo L an® = {vy, va, ..., v, } is a subset oZ$ called the neighbourhood index. Two
particular neighbourhoods have been extensively studi#ki literature: the von Neumann neighbour-
hood defined by, = {(e1,e2,...,es) ;| e1 | + | e2 | +...4 | es |= 1}, and the Moore neighbourhood
defined byVOO = {(61,62, ...,es) P MaxX1<i<s |€i| = 1}

Hereafter we assume thatZ VV ands = 2. N is then a two-dimensional array. In the von Neumann
neighbourhood’, a node u is linked to its four nearest nodes on the left, rightand down directions
(see Figure 1a). The Moore neighbourhdad is obtained froni/; by adding the four nearest nodes in
the diagonal directions (see Figure 1b).
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Figure 1. von Neumann and Moore neighbourhoods

In such networks, two types of conflicts may occur betweeedted individuals trying to infect a
common neighbour. Two infected individuals A and B of thes&tgeneration may compete to infect
a common neighbour C (see Figure 2a). This situation cooregpto cycles of length 4 in N. On the
other hand, the initial infected individual may competehadt second generation infective A, for the
infection of a common neighbour B (see Figure 2b). This sitmshappens when the network contains
a cycle of length 3.



Figure 2. Infection conflicts

Recently, Aparicio and Pascual [8] have derived a very singgproximate formula fof2; 3 on
two-dimensional arrays with Moore neighbourhood. Thewassthat the probability for a suscepti-
ble individual (that is in contact with infective neighbslito become infected is, irrespective of the
number of infected neighbours. On the other hand, they ahly into account the competition between
infected individuals of generation 2 for the infectionwo# T'(0), and assume that when a susceptible
nodev has an infected neighbourand exactlyk other neighbours with positive probabilities of infec-
tion p1, po, ..., Pk, it becomes infected with probabilify, and the contribution of; for its infection is
p/ (14 p1+p2 + ... 4+ pr).

The contribution of a secondary case I'(0) to the infection of a neighbour e I'(u) — {0} is then
computed as followsu is supposed to be infected, hence it has 'level’ 1, all otleeters ofl’(0) — {v}
are supposed to be infected with ’levg)’and the contribution of to the infection ofv that has exactly
k neighbours with 'levelp is p/(1 + kp).

The second row of Table 1 gives the contribution of node Xlierinfection of nodes A, B, C and D
in Figure 3a where the initial infected individual is.

A C D
X (see Figure 3a) P Tf_p ﬂ%p p(l—p)
Y (see Figure 3b) fEon e p(1—p) p(1—p)

Table 1.

Figure 3. T'(0) UT'(X) and I"(0) UT'(Y") for the Moore neighbourhood



Note that for X to infect D, it is necessary that D has not bedadted by the first generation
infective. Since the approach does not take into accourdgh®etition for the infection ob € I'(0),
it follows that the contribution of X for the infection of D j§(1 — p), hence

p p
R§§X:p+21+p+21+2p

Similarly, one can compute the contribution of Y& 5 (see the third row of Table 1):

+2p(1 - p)

RAP — P Lo P Ly,
2,3,Y 1+2p+ 1+p+ p(1—p)

In V, there are 4 nodes of type X and 4 nodes of types Y. Hence [8]:

4 3
RAP = L7 _6pp ——
2,3 2( p+1+p+1+2p)

Comment: Let us consider a node € T'%(0) — I'(0), v # 0, whose neighbours; , us, ..., uj, can be
infected with probabilitieg:, ps, ..., px. The probability that is not infected isl_[f:1 (1 — pp;). Hence
v is infected with probability — TT%_, (1 — pp).

By removing the two first hypotheses stated by Aparicio arst®al, the contributions of X and Y
to R, 3 are given in Table 2.

A B C D
X (see Figure 4a)| p 1*(1;{)2([)1*92) 1*(1*11;);1;?)2 (1*P)(1*$_*3f;)(1*l72)3)
Y (see Figure 4b) 1_(1Ii)2(pl_p ) 1—(1—1p+)/(31—p ) (1—p)(1—(11+—pp)(1—p ) (1—P)(1—§1+—3i)(1—9 )°)

Table 2.

This leads to the refined formula

= 2(1—(1—p)(1—p? 2(1—p)(1—(1—p)(1—p?)3 3(1—(1—p)(1—p3)? 1—p)(1=(1—p)(1—p?
RQAg:%Jr( (p/i)p( p))+( p)( 1(+3;n))( p))+ ( (2(1p+)§p)p))+( p)( (pr)( p7))

In section 4 we will see tha®4'y’ approximatest, 5 better thaniz4'% .

3. Analytical formula for R 5 on cellular networks

Let us now consider the problem of computifig 5 for a general cellular network NZ$,V).
Note that V4'(0). We can proceed as follows: compute, for each nedie average numbéy,, of
infections of generation 3 produced:afollowing the infection of the single node O of a completely
susceptible network. Since the only sites that can expegiérird generation infections correspond to
W =T(V)— {0}, wederiveRy 3 = >y Nu/(| V | p).

We are now ready to state the main result of this paper.

Theorem (Site theorem) In a cellular network N€Z3 , V') with an infectious disease of transmission
ratep, the average number of ternary cases produced by a secaraaryfollowing the introduction of
one infective individual in a completely susceptible patian is:

Duew(l—p)% (1 — (1 - p%))

Ry3 =
[V]p




Where Oy = { (1) gtﬁeerw‘i/se. and ay =|T(uw)NV |
Proof: In order to computeV,, for u € W, we consider all possible configurations of the neigh-
bourhood ofu. We only need to consider the configuration§'¢#) NV which corresponds to potential
second generation infectious that can infec6o let us assume thpl'(u) NV |= r.
Casel: u € W — V (see for instance nodes v andw in Figure 4). Note thaf,, = 0 anda,, = r
Clearly,k elements of (u) NV are infected with probabilitg’* p* (1 — p)"—*. Given such a configu-
ration, the probability that is an infective of generation 3 is— (1 — p)*. As a consequence

Ny = Y CEpP(1—p)F(1— (1= p)k)
= Y CRpR(L— )R = ST CR(1 = p) R [p(1 — p)]F
= L= = [((L=p) + (1= p) — (1= p)]
= 1=(-p=[0=p)—01-p)]

= -a-pr
= (- (1= p))

Case 2. u € WNT(0) (see nodes’ andv’ in Figure 4). Note that, = 1 anda,, = r. In
order to obtainV,, we just need to multiply the expression obtained in casey11b- p) in order to
express the fact that must not be infected by node 0. This leadsMg = (1 — p)(1 — (1 — p?)") =

(1= p)P (1= (1=p ).

This shows that: ,
o Suew(L =) (1= (1= p7))
2,3 —
[V ]p
1 fueV
Where Oy = { 0 otherwise. and ay =|T(uw)NV |

Comment: We have called this "site theorem", because it is based ontlaoch¢hat evaluates the
average number of ternary cases produced on each sitd/.

Application to two-dimensional arrays

For the von Neumann neighbourhood (see Figuresa)- 6, = 0, o, = 1 anda,, = 2. Since
2 2\2
I'2(0)—{0} contains 4 nodes of typeand 4 nodes of type, it follows that: R 5 = £+ 0=2)) —

3p—p?

For the Moore neighbourhood (see Figure 4b), we can comaltie B.

node u v w U v
5 0 0 0 1 1
o} 3 2 1 4 2
nb of nodes of this type 4 8 4 4 4

Table 3.



a)

Figure 4.
Hence _(1_,2)\3 _(1_12)2 (1,2 _ _(1_,2\4 _ _(1_12)2
Rys = 4(1-(1—p*)*)+8(1—(1=p*)*)+4(1=(1=p*))+4(1=p) A =(1=p*) ) +4(1=p) 1= (1=p*)?)
s 8p
£(14 —12p% + 5p* — 6p + Tp® — 4p® — pb + p7)

4. Simulations

For two-dimensional networks with von Neumann and Moorglieourhoods, we lei vary in the
interval [0, 0.45] because, for the arrays considered, this interval conta@sritical valuep. such that
Ra3(p.) = 1. We then draw the curv&; ; obtained by simulation and compare it R\, ﬁﬁ{f
andR; 3. Simulations are done on a network of size>3@0. Figure 5 shows that for both networks,
R{L < REL < Ry 3, andR, 3 is very close taR} 5.

0,54

@ Ry, @ R,
(a) (b)

Figure 5.

Table 4 gives, for the total size of the epidemic introduceddction 1, the three maximal values
obtained during the 500 simulations, for 2D arrays on vonri@on and Moore neighbourhoods. It
appears clearly that, fd®2 5 < 1 the total size is small, whereas 85 3 > 1 a large outbreak occurs.
This confirms the quality oR, 5 as approximation of.



Ro 3 0.6 | 07|08 |09 098 1 1112 (1314|1516 |17 |18 | 1.9
von Neumann| 27 | 35 | 51 | 65 | 75 | 115| 237 | 292 | 426 | 453 | 827 | 882 | 897 | 899 | 900
20 |33 |35 |61 |71 |96 | 232| 258| 381 | 445| 817 | 879 | 897 | 898 | 900
20 |30 |35 |58 | 71 |94 | 182| 253 | 359| 441 | 812| 879 | 894 | 897 | 900
Moore 24 | 49 | 65 | 99 | 103| 133| 187 | 235| 446 | 524 | 640 | 768 | 808 | 863 | 900
13 |41 |64 |90 | 91 | 120| 185| 234 | 441 | 524 | 624 | 734 | 803 | 850 | 898
19 |40 |53 | 83 |89 | 118 169| 207 | 441 | 522 | 604 | 719 | 798| 848 | 898
Table 4.

5. Discussion

In [11] it has been shown how, using the disorder parametgsqsed by Watts and Strogatz [11]
to rewire the connections of a cellular network, one canvedri, 3 for some small-world networks. In
social networks, communities are groups of nodes that hdghadensity of edges within them and
low density of edges between groups [10, 9]. A great cha#ldago show the impact of communities
on the spread of infectious diseases. Indeed, followingrttieduction of an infective individual in a
susceptible network, the infection will invade primarihetcommunity ofu.
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