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ABSTRACT. In mathematical epidemiology, the basic reproduction number R0 is the average number of new infec-
tions produced by an infective individual also called of generation 1, introduced in a completely susceptible population.
If R0 < 1, then the disease dies, whereas for R0 > 1, the infection can invade the host population and persist. For SIR
contact networks, one generally approximates R0 by the average number R2,3 of infective individuals of generation 3
produced by an infective of generation 2. We give here a simple analytic formula for R2,3 on cellular networks. Simu-
lations on two dimensional networks with von Neumann and Moore neighbourhoods, show that R2,3 = 1 corresponds
to an epidemic threshold, and this confirms the good quality of R2,3 as approximation of R0 .

RÉSUMÉ. En épidémiologie mathématique, le taux de reproduction de base R0 est le nombre moyen d’infections
secondaires produites par un individu infecté introduit dans une population susceptible. Si R0 < 1, alors la maladie
disparait, alors que pour R0 > 1, l’infection peut envahir une fraction non nulle de la population. Pour les réseaux de
contact de type SIR, R0 est généralement approximé par le nombre moyen R2,3 d’infectés de génération 3 produits
par un infecté de génération 2. Nous proposons ici une formule analytique simple de R2,3 pour les réseaux cellulaires.
Les simulations faites sur des grilles de dimension 2, à voisinage de von Neumann et de Moore, montrent que R2,3 = 1

correspond à un seuil épidémique, ce qui confirme la bonne qualité de R2,3 comme approximation de R0.
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1. Introduction

The classical SIR epidemiological model subdivides the population into three groups called com-
partments. Compartment S contains susceptible individuals. Compartment I corresponds to the class of
infective individuals who can transmit the disease when they have adequate contacts with susceptible
individuals. Compartment R corresponds to recovered individuals, i.e. who are immunized, dead or
are no longer in contact with susceptible individuals. A presentation of SIR and related models may be
found in [4].

Basic compartmental or mean field epidemiological models based on systems of ordinary differential
equations, assume that individuals in the population are uniformly mixed. Such models usually have
a Disease Free Equilibrium (DFE) corresponding to the stateof the population in the absence of the
disease. In most cases, there is a threshold parameterR0 such that :

– if R0 < 1, then the DFE is locally asymptotically stable, and the disease cannot invade the pop-
ulation, as the consequence of the introduction of a small number of infected individuals when the
population is at DFE ;

– on the contrary ifR0 > 1, then the DFE is unstable and invasion is possible.
The mathematical definition ofR0 has a nice interpretation in terms of epidemiology. Indeed,R0

coincides with the average number of secondary infections produced by a typical infective individual
introduced in a completely susceptible population.

There are several approaches for incorporating heterogeneity in epidemiological models. In some
models, the space is discrete and consists of a number of patches which are supposed to be well mixed.
These patches represent social units with movements of individuals between patches. This leads to a
multi-patch, multi-compartment approach that has been used for instance to propose a generalization of
the classical Ross-MacDonald model which describes the dynamics of malaria [1].

In this paper, we consider contact networks, where an edge (i,j) between two vertices means that
the corresponding individuals make frequent contacts witheach other. In this context, the question is to
study how the properties of the infectious disease and the topological properties of the contact network
combine to determine the propagation of the infectious disease in the population. Andersson [5] has
studied SIR epidemics on random networks. He assumed that the neighbours of a given node were
randomly distributed and that, with high probability, two neighbouring nodes did not have common
neighbours. With these assumptions, he showed thatR0 = ρ(<d2>

<d>
− 1), where< d > is the average

vertex degree,< d2 > is the average value of the square of the vertex degrees andρ is the spreading
rate of the infectious agents.

In such SIR networks, the qualitative behaviour of the dynamics is captured by the total number
of individuals who experience the disease before the end of the epidemic. The threshold phenomenon
observed on the total size of the epidemic is then related to the basic reproduction number as follows :
if R0 < 1, then following the introduction of few infective individuals in a susceptible population, the
total size of the epidemic remains small, while forR0 > 1, the proportion of this total size is significant
with positive probability. In this context the basic reproduction numberR0 is generally approximated
by the average numberR2,3 of new infections produced by a second generation infectiveindividual,
following the introduction of one infectious individual ina completely susceptible network.

Pastor-Satorras and Vespignani [7] have studied SIS scale-free networks, i.e. networks where the
distribution of probabilities that a node has exactly i neighbours follows a power lawP (i) = i−α, with
2 < α ≤ 3. They have shown that, as the size of the network tends to infinity, such networks are very
weak in face of SIS infectious diseases, and present an effective epidemic threshold that is vanishing in
the limit n −→ ∞, whatever is the spreading rateρ of the infectious agents.



Later, Piccardi and Casagrandi [2] have shown that the properties exhibited by Pastor-Satorras and
Verpignani were strongly linked to the underlying simple SIS compartmental model. More precisely,
they have shown that scale-free networks can be unable to support diseases "with non linear force of in-
fection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters".

We are interested here in the particular case of cellular networks, i.e. regular and locally connected
arrays with nodes indexed byZZZs, and for which there is a finite setV = {v1, ..., vn} called the neigh-
bourhood index, such that each nodeu is connected tou+ v1, ..., u+ vn.

This paper is organized as follows. Section 2 presents the method proposed recently by Aparicio
and Pascual for the computation of an approximate value ofR2,3, together with a refinement. Section
3 gives a simple analytical formula forR2,3 on cellular SIR networks. Section 4 presents, for the von
Neumann and Moore neighbourhoods on two-dimensional arrays, experiments that confirm the good
quality ofR2,3 as approximation ofR0. In section 5 we conclude and give some directions for future
work.

2. Approximate formulas for R2,3 on finite cellular networks

A finite cellular network is a couple N=(ZZZs
L, V ), wheres and L are positive integers,ZZZL is the set

of integers modulo L andV = {v1, v2, ..., vn} is a subset ofZZZs
L called the neighbourhood index. Two

particular neighbourhoods have been extensively studied in the literature: the von Neumann neighbour-
hood defined byV1 = {(e1, e2, ..., es) :| e1 | + | e2 | +...+ | es |= 1}, and the Moore neighbourhood
defined byV∞ = {(e1, e2, ..., es) : max1≤i≤s |ei| = 1}.

Hereafter we assume that0 6∈ V ands = 2. N is then a two-dimensional array. In the von Neumann
neighbourhoodV1, a node u is linked to its four nearest nodes on the left, right, up and down directions
(see Figure 1a). The Moore neighbourhoodV∞ is obtained fromV1 by adding the four nearest nodes in
the diagonal directions (see Figure 1b).

Figure 1. von Neumann and Moore neighbourhoods

In such networks, two types of conflicts may occur between infected individuals trying to infect a
common neighbour. Two infected individuals A and B of the second generation may compete to infect
a common neighbour C (see Figure 2a). This situation corresponds to cycles of length 4 in N. On the
other hand, the initial infected individual may compete with a second generation infective A, for the
infection of a common neighbour B (see Figure 2b). This situation happens when the network contains
a cycle of length 3.



Figure 2. Infection conflicts

Recently, Aparicio and Pascual [8] have derived a very simple approximate formula forR2,3 on
two-dimensional arrays with Moore neighbourhood. They assume that the probability for a suscepti-
ble individual (that is in contact with infective neighbours) to become infected isρ, irrespective of the
number of infected neighbours. On the other hand, they only take into account the competition between
infected individuals of generation 2 for the infection ofu /∈ Γ(0), and assume that when a susceptible
nodev has an infected neighbouru and exactlyk other neighbours with positive probabilities of infec-
tion p1, p2, ..., pk, it becomes infected with probabilityρ, and the contribution ofu for its infection is
ρ/(1 + p1 + p2 + ...+ pk).

The contribution of a secondary caseu ∈ Γ(0) to the infection of a neighbourv ∈ Γ(u)−{0} is then
computed as follows:u is supposed to be infected, hence it has ’level’ 1, all other nodes ofΓ(0)− {v}
are supposed to be infected with ’level’ρ, and the contribution ofu to the infection ofv that has exactly
k neighbours with ’level’ρ is ρ/(1 + kρ).

The second row of Table 1 gives the contribution of node X for the infection of nodes A, B, C and D
in Figure 3a where the initial infected individual is ’•’.

A B C D
X (see Figure 3a) ρ ρ

1+ρ
ρ

1+2ρ ρ(1− ρ)

Y (see Figure 3b) ρ
1+2ρ

ρ
1+ρ

ρ(1− ρ) ρ(1− ρ)

Table 1.

Figure 3. Γ(0) ∪ Γ(X) and Γ(0) ∪ Γ(Y ) for the Moore neighbourhood



Note that for X to infect D, it is necessary that D has not been infected by the first generation
infective. Since the approach does not take into account thecompetition for the infection ofD ∈ Γ(0),
it follows that the contribution of X for the infection of D isρ(1− ρ), hence

RAP
2,3,X = ρ+ 2

ρ

1 + ρ
+ 2

ρ

1 + 2ρ
+ 2ρ(1− ρ)

Similarly, one can compute the contribution of Y toR2,3 (see the third row of Table 1):

RAP
2,3,Y =

ρ

1 + 2ρ
+ 2

ρ

1 + ρ
+ 4ρ(1− ρ)

In V∞ there are 4 nodes of type X and 4 nodes of types Y. Hence [8]:

RAP
2,3 =

ρ

2
(7− 6ρ+

4

1 + ρ
+

3

1 + 2ρ
)

Comment: Let us consider a nodev ∈ Γ2(0) − Γ(0), v 6= 0, whose neighboursu1, u2, ..., uk can be
infected with probabilitiesp1, p2, ..., pk. The probability thatv is not infected is

∏k
i=1(1− ρpi). Hence

v is infected with probability1−
∏k

i=1(1− ρpi).
By removing the two first hypotheses stated by Aparicio and Pascual, the contributions of X and Y

toR2,3 are given in Table 2.

A B C D

X (see Figure 4a) ρ 1−(1−ρ)(1−ρ2)
1+2ρ

1−(1−ρ)(1−ρ2)2

1+2ρ
(1−ρ)(1−(1−ρ)(1−ρ2)3)

1+3ρ

Y (see Figure 4b) 1−(1−ρ)(1−ρ2)
1+2ρ

1−(1−ρ)(1−ρ2)
1+ρ

(1−ρ)(1−(1−ρ)(1−ρ2))
1+ρ

(1−ρ)(1−(1−ρ)(1−ρ2)3)
1+3ρ

Table 2.

This leads to the refined formula

R̃AP
2,3 = ρ

2 + 2(1−(1−ρ)(1−ρ2))
1+ρ

+ 2(1−ρ)(1−(1−ρ)(1−ρ2)3)
1+3ρ + 3(1−(1−ρ)(1−ρ2)2)

2(1+2ρ) + (1−ρ)(1−(1−ρ)(1−ρ2))
1+ρ

In section 4 we will see that̃RAP
2,3 approximatesR2,3 better thanRAP

2,3 .

3. Analytical formula for R2,3 on cellular networks

Let us now consider the problem of computingR2,3 for a general cellular network N=(ZZZs
L, V ).

Note that V=Γ(0). We can proceed as follows: compute, for each nodeu, the average numberNu of
infections of generation 3 produced atu following the infection of the single node O of a completely
susceptible network. Since the only sites that can experience third generation infections correspond to
W = Γ(V )− {0}, we deriveR2,3 =

∑

u∈W Nu/(| V | ρ).
We are now ready to state the main result of this paper.

Theorem (Site theorem) In a cellular network N=(ZZZs
L, V ) with an infectious disease of transmission

rateρ, the average number of ternary cases produced by a secondarycase, following the introduction of
one infective individual in a completely susceptible population is:

R2,3 =

∑

u∈W (1− ρ)δu(1− (1 − ρ2)αu)

| V | ρ



Where δu =

{

1 if u ∈ V
0 otherwise.

and αu =| Γ(u) ∩ V |

Proof: In order to computeNu for u ∈ W , we consider all possible configurations of the neigh-
bourhood ofu. We only need to consider the configurations ofΓ(u)∩V which corresponds to potential
second generation infectious that can infectu. So let us assume that| Γ(u) ∩ V |= r.

Case 1: u ∈ W − V (see for instance nodesu, v andw in Figure 4). Note thatδu = 0 andαu = r
Clearly,k elements ofΓ(u) ∩ V are infected with probabilityCk

r ρ
k(1 − ρ)r−k. Given such a configu-

ration, the probability thatu is an infective of generation 3 is1− (1− ρ)k. As a consequence
Nu =

∑r
k=1 C

k
r ρ

k(1− ρ)r−k(1 − (1− ρ)k)

=
∑r

k=1 C
k
r ρ

k(1− ρ)r−k −
∑r

k=1 C
k
r (1 − ρ)r−k[ρ(1− ρ)]k

= [1− (1 − ρ)r]− [((1 − ρ) + ρ(1 − ρ))r − (1 − ρ)r]

= 1− (1 − ρ)r − [(1− ρ2)r − (1− ρ)r]

= 1− (1 − ρ2)r

= (1 − ρ)δu(1 − (1− ρ
2

)αu)

Case 2: u ∈ W ∩ Γ(0) (see nodesu′ andv′ in Figure 4). Note thatδu = 1 andαu = r. In
order to obtainNu, we just need to multiply the expression obtained in case 1, by (1 − ρ) in order to
express the fact thatu must not be infected by node 0. This leads toNu = (1 − ρ)(1 − (1 − ρ2)r) =

(1− ρ)δu(1− (1 − ρ
2

)αu).
This shows that:

R2,3 =

∑

u∈W (1 − ρ)δu(1 − (1− ρ
2

)αu)

| V | ρ

Where δu =

{

1 if u ∈ V
0 otherwise.

and αu =| Γ(u) ∩ V |

Comment: We have called this "site theorem", because it is based on a method that evaluates the
average number of ternary cases produced on each siteu ∈ W .

Application to two-dimensional arrays
For the von Neumann neighbourhood (see Figure 4a)δu = δv = 0, αu = 1 andαv = 2. Since

Γ2(0)−{0} contains 4 nodes of typeu and 4 nodes of typev, it follows that:R2,3 = 4ρ2+4(1−(1−ρ2)2)
4ρ =

3ρ− ρ3

For the Moore neighbourhood (see Figure 4b), we can compute Table 3.

node u v w u
′

v
′

δ 0 0 0 1 1
α 3 2 1 4 2
nb of nodes of this type 4 8 4 4 4

Table 3.



Figure 4.
Hence
R2,3 = 4(1−(1−ρ2)3)+8(1−(1−ρ2)2)+4(1−(1−ρ2))+4(1−ρ)(1−(1−ρ2)4)+4(1−ρ)(1−(1−ρ2)2)

8ρ

= ρ
2 (14− 12ρ2 + 5ρ4 − 6ρ+ 7ρ3 − 4ρ5 − ρ6 + ρ7)

4. Simulations

For two-dimensional networks with von Neumann and Moore neighbourhoods, we letρ vary in the
interval[0, 0.45] because, for the arrays considered, this interval containsthe critical valueρc such that
R2,3(ρc) = 1 . We then draw the curveR∗

2,3 obtained by simulation and compare it toRAP
0 , R̃AP

2,3

andR2,3. Simulations are done on a network of size 30× 30. Figure 5 shows that for both networks,
RAP

2,3 ≤ R̃AP
2,3 ≤ R2,3, andR2,3 is very close toR∗

2,3.

Figure 5.

Table 4 gives, for the total size of the epidemic introduced in section 1, the three maximal values
obtained during the 500 simulations, for 2D arrays on von Neumann and Moore neighbourhoods. It
appears clearly that, forR2,3 < 1 the total size is small, whereas forR2,3 > 1 a large outbreak occurs.
This confirms the quality ofR2,3 as approximation ofR0.



R2,3 0.6 0.7 0.8 0.9 0.98 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
von Neumann 27 35 51 65 75 115 237 292 426 453 827 882 897 899 900

20 33 35 61 71 96 232 258 381 445 817 879 897 898 900
20 30 35 58 71 94 182 253 359 441 812 879 894 897 900

Moore 24 49 65 99 103 133 187 235 446 524 640 768 808 863 900
13 41 64 90 91 120 185 234 441 524 624 734 803 850 898
19 40 53 83 89 118 169 207 441 522 604 719 798 848 898

Table 4.

5. Discussion

In [11] it has been shown how, using the disorder parameter proposed by Watts and Strogatz [11]
to rewire the connections of a cellular network, one can deriveR2,3 for some small-world networks. In
social networks, communities are groups of nodes that have ahigh density of edges within them and
low density of edges between groups [10, 9]. A great challenge is to show the impact of communities
on the spread of infectious diseases. Indeed, following theintroduction of an infective individualu in a
susceptible network, the infection will invade primarily the community ofu.
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