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ABSTRACT. Although Cloud Computing provides a means to support remote, on-demand access to
a set of computing resources, its ad-hoc management for quality-of-service and SLA poses significant
challenges to the performance, availability and economical costs of the cloud. This paper discusses
these issues and presents early ideas to handle them. First, it introduces the SLAaaS model (SLA
aware Service) that enriches the general paradigm of Cloud Computing. SLAaaS enables a sys-
tematic and transparent integration of service levels and SLA to the cloud. It is orthogonal to IaaS,
PaaS and SaaS and may apply to any of them. Furthermore, the paper discusses autonomic SLA
management in the cloud and presents early ideas to tackle it.

RÉSUMÉ. Le Cloud Computing est un modèle qui permet l’accès à la demande et à distance à
un ensemble de ressources de calcul configurables. Cependant, la gestion ad-hoc de la qualité de
service et du contrat de niveau de service (Service Level Agreement – SLA) dans le cloud soulève des
problèmes de performance, de disponibilité, de consommation énergétique et de coûts économiques
du cloud. Cet article présente un nouveau modèle de cloud appelé SLAaaS (SLA aware Service). Ce
modèle permet d’intégrer la qualité de service et le contrat SLA comme éléments à part entière du
cloud. Ainsi, le paradigme général de Cloud Computing sera enrichi avec le nouveau modèle SLAaaS.
Ce dernier est orthogonal aux modèles IaaS, PaaS et SaaS et peut sŠappliquer à n’importe lequel
dŠentre eux. L’article présente la gestion de SLA dans le cloud à travers une étude de cas menée
dans un systèmes réel.
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1. Introduction
Cloud Computing is a paradigm for enabling remote, on-demand access to a set of

configurable computing resources. A Cloud may stand at different levels of the hardware
and software stack where: (i) an Infrastructure as a Service (IaaS) cloud enables access to
hardware resources such as servers and storage devices, (ii) a Platform as a Service (PaaS)
cloud allows the access to software resources such as operating systems and software de-
velopment environment, and (iii) a Software as a Service (SaaS) cloud is an alternative to
classical software applications running locally on personal computers which are, instead,
provided remotely by the cloud (e.g. messaging services, document editing services,
etc.). A large number of Cloud Computing environments are proposed: (i) IaaS clouds
such as Amazon S3 and AT&T Synaptic storage services [1, 2], Amazon SimpleDB and
Microsoft SQL Azure database services [1, 15], or Amazon EC2 and AT&T Synaptic
Compute computing services (i.e. servers) [1, 2]; (ii) PaaS clouds such as Microsoft
Azure and Google AppEngine software developments environments [9, 15]; (iii) SaaS
clouds such as document editing and communication services provided by Google Apps,
Microsoft BPOS.

In this context where multiple clouds provide similar services (e.g. several IaaS clouds
provide similar services to access computing resources), it is not easy for a consumer to
compare the proposed cloud services and choose the most appropriate one for his needs.
We believe that a differentiating element between Cloud Computing solutions will be
the quality-of-service (QoS) and the service level agreement (SLA) guaranties provided
by the cloud. Existing commercial cloud solutions include some kind of SLA, but ex-
press it with vague terms such as "small vs. large instances". Very few QoS aspects are
considered in the cloud, for instance, no guaranties regarding performance are provided.
Furthermore, the cloud does not automatically handle dynamic variations of cloud usage.
Initiatives such as Amazon Auto Scaling help the customer to adapt the size of his cloud
[4]. However, significant efforts from the customer are required for cloud capacity plan-
ning; this goes against one of the main motivations of Cloud Computing that is the ease
of use of services by cloud customers. In summary, Cloud Computing faces the follow-
ing open issues: (i) Need of integration of QoS and SLA requirements with the cloud;
(ii) Automated dynamic elasticity of the cloud for SLA management. In order to address
these issues, we call for: (i) a definition of a new cloud model that integrates SLA as part
of the cloud, and (ii) an automated cloud control for building SLA-aware dynamic elastic
clouds.

2. SLA-Aware Elastic Clouds
We call for a systematic and transparent integration of quality-of-service and service

level agreement to the cloud. Quality-of-service (QoS) in the cloud may refer to several
aspects such as performance (e.g. service response time, throughput), or availability (e.g.
service abandon rate). Service level agreement (SLA) in the cloud is a contract between
a cloud provider and a cloud customer. It specifies the levels of service that the cloud
should provide to the customer in terms of objectives to attain for different QoS aspects.
Another desirable objective is the reduction of cost of the cloud, i.e. its impact on the
energy footprint and the economical costs.

We introduce a new model, the SLA aware Service (SLAaaS) model, to enrich the
general paradigm of Cloud Computing. SLAaaS is orthogonal to IaaS, PaaS and SaaS



clouds and may apply to any of them. With SLAaaS, a cloud clearly exhibits its service
levels and the proposed SLA. This enables a consumer who looks for a cloud service to
transparently compare service levels of different cloud solutions before choosing the one
that is best suited for his needs.

In order to guarantee the SLA of SLAaaS clouds, automated control for dynamic
cloud elasticity should be provided. This aims to meet quality-of-service requirements
such as performance and availability while minimizing cloud cost (i.e. energetic impact
and economical costs). In the following, we identify and discuss three complementary
research directions to provide SLA-aware dynamic elastic clouds.

Online observation and monitoring of the cloud. This aims to automatically capture
variations in cloud usage and workload, to detect SLA violation and to trigger cloud
reconfiguration when necessary. QoS measurements may apply at different levels to pro-
vide low-level metrics for IaaS clouds or higher application-level metrics for SaaS clouds.
The main issue here consists in defining scalable, accurate and non-intrusive distributed
algorithms for cloud monitoring.

Modeling the cloud. A cloud has a dynamic behavior with varying and nonlinear cloud
service workloads. This has a direct impact on cloud QoS. A cloud is also characterized
by its actual configuration, i.e. its size (number of cloud services), its location (machines
hosting cloud services), and its service parameters (configuration parameters of individ-
ual cloud services). Obviously, the cloud configuration has an impact on both cloud QoS
and cloud cost. Cloud modeling aims to render the impact of cloud workload and config-
uration on the QoS and cost of the cloud. The challenge here is to define a model that is
accurate, capable of rendering the nonlinear variation of cloud workload, and that is easy
to use with real world clouds (e.g. via automated and online tuning of model parameters).
Control theory modeling techniques can be effectively applied here.

Automated control of the cloud. Cloud elasticity is the ability of the cloud to change
its configuration, while dynamic cloud elasticity is the ability of the cloud to be elastic
while the service is online. Thus, automated cloud control aims to build a dynamic elastic
cloud (i.e. a new cloud configuration) that meets QoS requirements as specified in the
SLA while minimizing cloud cost (energy footprint, economical costs). To do so, the
use of a cloud model allows to reason about the variations of cloud configuration and
workload and their impact on cloud QoS and cost. Mathematical optimization and con-
trol theory techniques can be effectively used in this context. First, the definition of an
objective function allows to precisely quantify SLA QoS requirements vs. cost of a cloud
configuration. The use of mathematical optimization techniques allow to determine, for
a cloud workload, an optimal configuration, i.e. a cloud configuration that maximizes
the objective function by guaranteeing SLA requirements while minimizing the cost. The
definition of control laws describes how to automatically change the cloud configuration
to an optimal configuration with respect to the objective function.

The challenge here is multifold: (i) the definition of scalable and optimal control
algorithms for the cloud, (ii) the handling of different and sometimes antagonist QoS
requirements for the cloud (e.g. performance vs. availability), (iii) the monitoring of the
underlying distributed system tackling scalability and accuracy of the monitored data, and
(iv) the proposal of techniques for online cloud reconfiguration such as online service (un-
)provisioning (i.e. cloud rescaling), online redeployment (e.g. virtual machine migration
in IaaS clouds), and online service’s internal parameter reconfiguration (e.g. application
server parameters in PaaS clouds).



3. Case Study: SLA-Aware Multi-Tier Internet Services
Internet services usually follow the classical client-server architecture where servers

provide clients with some online service (e.g. online bookstore, e-banking service, etc.).
A client remotely connects to the server, sends it a request, the server processes the request
and builds a response that is returned to the client before the connection is closed. We
consider synchronous communication systems, that is, when the client sends its request
to the server, it blocks until it receives a response. Furthermore, for scalability purposes
Internet services are built as multi-tier systems. A multi-tier system consists of a series
of M server tiers T1, T2, ..., TM . Client requests flow from the front-end tier T1 to the
middle-tier and so on until reaching the back-end tier TM . Each tier is tasked with a
specific role. For instance, the front-end web tier is responsible of serving web documents,
and the back-end database tier is responsible of storing non-ephemeral data. Moreover,
to face high loads and provide higher service scalability, a commonly used approach is
the replication of servers in a set of machines. Here, a tier consists of a set of replicated
services, and client requests are dynamically balanced between replicated services.

3.1. Service Level Agreement
SLA (Service Level Agreement) is a contract negotiated between clients and their

service provider. It specifies service level objectives (SLOs) that the application must
guarantee in the form of constraints on quality-of-service metrics, such as performance
and availability. Client request latency and client request abandon rate are key metrics of
interest for respectively quantifying the performance and availability of Internet services.

The latency of a client request is the necessary time for an Internet service to process
that request. The average client request latency (or latency, for short) of an Internet service
is denoted as `. A low latency is a desirable behavior which reflects a reactive service.

The abandon rate of client requests is the ratio of requests that are rejected by an
Internet service compared to the total number of requests issued by clients to that service.
It is denoted as α. A low client request abandon rate (or abandon rate, for short) is a
desirable behavior which reflects the level of availability of an Internet service.

Besides performance and availability, the cost of an Internet service refers to the eco-
nomical and energetic costs of the service. Here, the cost ω is defined as the total number
of servers that host an Internet service.

3.2. Service Configuration
The configuration κ of an Internet service is characterized in the following by a triplet

κ(M,AC,LC), where M is the fixed number of tiers of the multi-tier service, AC and
LC are respectively the architectural configuration and local configuration of the Internet
service that are detailed in the following.

The architectural configuration describes the distributed setting of a multi-tier Internet
service in terms of the number of replicas at each tier. It is conceptualized as an array
AC < AC1, AC2, ..., ACM >, where ACi is the number of replica servers at tier Ti of
the multi-tier service.

The local configuration describes the local setting applied to servers of the multi-
tier service. It is conceptualized as an array LC < LC1, LC2, ..., LCM >. Here, LCi
represents servers MPL (Multi-Programming Level) at tier Ti of the multi-tier service.
The MPL is a configuration parameter of a server that fixes a limit for the maximum
number of clients allowed to concurrently access the server (Ferguson, 1998). Above this



limit, incoming client requests are rejected. Thus, a client request arriving at a server
either terminates successfully with a response to the client, or is rejected because of the
server’s MPL limit.

3.3. Service Workload
Service workload is characterized, on the one hand, by workload amount, and on

the other hand, by workload mix. Workload amount is the number of clients that try to
concurrently access a server; it is denoted as N . Workload mix, denoted as X , is the
nature of requests made by clients and the way they interleave, e.g. read-only requests
mix vs. read-write requests mix. There is no well established way to characterize the
workload mix X of an Internet service.

Furthermore, service workload may vary over time, which corresponds to different
client behaviors at different times. For instance, an e-mail service usually faces a higher
workload amount in the morning than in the rest of the day. Workload variations have a
direct impact on the quality-of-service as discussed later.

3.4. Adaptive Control of Internet Services
Both service workload and service configuration have an impact on the performance,

availability and cost of services. The workload of Internet services is an exogenous input,
which variation can not be controlled. Thus, to handle workload variations and provide
guaranties on performance and availability, Internet services must be able to dynamically
adapt their underlying configuration. Several objectives are targeted here:

– Guarantee SLA constraints in terms of service performance and availability, while
minimizing the cost of the Internet service.

– Handle nonlinear behavior of Internet services taking into account both workload
amount and in workload mix variations over time.

– Provide self-adaptive control of Internet services that provides online automatic re-
configurations of Internet services.

We propose MoKa, a nonlinear utility-aware control for self-adaptive Internet ser-
vices. First, MoKa is based on a utility function that characterizes the optimality of the
configuration of an Internet service in terms of SLA requirements for performance and
availability, in conjunction with service cost. Second, a nonlinear model of Internet ser-
vices is described to predict the performance, availability and cost of a service. Third,
a capacity planning method is proposed to calculate the optimal configuration of the In-
ternet service. Finally, an adaptive nonlinear control of Internet services is provided to
automatically apply optimal configuration to online Internet services. MoKa is built as
a feedback control of multi-tier Internet services , with three main elements: (i) online
monitoring of the Internet service, (ii) adaptive control of the Internet service, and (iii)
online reconfiguration of the Internet service.

Online monitoring aims at observing the Internet service and producing the neces-
sary data in order to, on the one hand, automatically calibrate MoKa’s model, and on the
other hand, trigger MoKa’s capacity planning and control. MoKa’s model calibration is
performed online and automatically. This allows rendering the dynamics of service work-
load mix and workload amount, without requiring human intervention and manual tuning
of model parameters, which makes the model easier to use. Therefore, the controller calls
the utility-aware capacity planning method to calculate the optimal configuration κ∗ for
the current workload amount and workload mix. That optimal configuration guarantees



the SLA performance and availability objectives while minimizing the cost of the Internet
service. Finally, the new calculated configuration κ∗ is applied to the Internet service. In
the following, we briefly describe MoKa utility function, modeling, and capacity plan-
ning.

3.4.1. Service Utility Function
We consider an SLA of an Internet service that specifies service performance and

availability constraints in the form of maximum latency `max and maximum abandon
rate αmax not to exceed. Performability Preference (i.e. performance and availability
preference) of an Internet service is defined as follows:

PP (`, α) = (` ≤ `max) · (α ≤ αmax) (Eq. 1)
where ` and α are respectively the actual latency and abandon rate of the Internet

service. Note that ∀`,∀α, PP (`, α) ∈ 0, 1, depending on whether Eq. 1 holds or not.
Based on the performability preference and cost of an Internet service, the utility func-

tion of the service combines both criteria as follows:
θ(`, α, ω) = M ·PP (`,α)

ω (Eq. 2)
where ω is the actual cost (i.e. #servers) of the service, and M is the number of

tiers of the multi-tier Internet service. M is used in Eq. 2 for normalization purposes.
Here, ∀`,∀α,∀ω, θ(`, α, ω) ∈ [0, 1], since θ ≥ M (at least one server per tier) and
PP (`, α) ∈ {0, 1}.

A high value of the utility function reflects the fact that, on the one hand, the Internet
service guarantees service level objectives for performance and availability and, on the
other hand, the cost underlying the service is low. In other words, an optimal configuration
of an Internet service is the one that maximizes its utility function.

3.4.2. Service Modeling
The proposed analytic model predicts the latency, abandon rate and cost of an Internet

service, for a given configuration κ of the Internet service, a given workload amount N
and a given workload mix X . The model follows a queueing network approach, where
a multi-tier system is modeled as an M/M/c/K queue. Moreover, Internet services are
modeled as closed loops to reflect the synchronous communication model that underlies
these services, that is a client waits for a request response before issuing another request.

3.4.3. Service Capacity Planning
The objective of the capacity planning is to calculate an optimal configuration of a

multi-tier Internet service, for a given workload amount and workload mix, to fulfill the
SLA in terms of latency and abandon rate constraints, and to minimize the cost of the
service. Thus, an optimal configuration κ∗ is a configuration that has the highest value of
the utility function κ∗.

4. Related Work
The control of services to guarantee the SLA is a critical requirement for successful

performance and availability management of cloud services. The management of service
performance and availability is usually achieved by system administrators using ad-hoc
tuning [4, 14]. However, new approaches tend to appear to ease the management of such
systems. These approaches differ with regard to several criteria: tackling performance
and/or availability objectives, handling service workload variations in terms of workload
amount and/or workload mix, the used control techniques, and the applied control mecha-



nism (i.e. actuators). Different control mechanisms may be considered to manage service
performance and availability, such as server provisioning, admission control, service dif-
ferentiation, service degradation, and request scheduling [10]. In the following, we will
focus on approaches using the two first techniques, namely admission control for a local
configuration of the concurrency level of a server, and server provisioning for an archi-
tectural configuration of the size of a replicated distributed Internet service.

Admission control fixes the MPL concurrency level of a multi-programming sys-
tem (e.g. multi-threaded servers). It has been applied to a web server [8], a database
server [16], or a multi-tier system [13]. Some admission control solutions are proposed
in the form of heuristics [11, 16], such as hill-climbing. These solutions have the ad-
vantage to be simple to implement; however, they provide a best-effort behavior without
guarantees on the quality-of-service and SLA of the services.

Other approaches tend to provide strict guarantees on the quality-of-service, and are
usually based on analytic models to characterize the system and control it. For instance,
there are linear models and nonlinear models [7, 17, 18, 21], queuing theory-based models
or control theory-based models [17, 7, 12], models for central systems or for distributed
services [3, 19], used for providing guaranties on a unique QoS criterion or for com-
bining multiple criteria [5, 13], applying a unique or multiple control mechanisms, i.e.
actuators, [7, 16].

Other approaches control Internet services by provisioning/unprovisioning servers to
the service. Autonomic provisioning of database servers is presented in [6], and server
provisioning in multi-tier systems is described in [3]. While these systems are based on
heuristics, other approaches tend to better characterize multi-tier applications through an-
alytic modeling for provisioning multi-tier systems [20, 19]. However, these approaches
are restricted to performance management and do not take into account service avail-
ability objectives. Furthermore, they require extensive model calibration with appropriate
parameter values; and this calibration is tied to a given workload mix and must be changed
each time the workload mix changes, which is not easily detectable.

5. Conclusion
This paper describes ideas for a systematic integration of SLA to the cloud through

the definition of the SLAaaS cloud model, and research directions for an automated cloud
control for building SLA-aware dynamic elastic clouds. The paper also presented the
MoKa case study, a system for adaptive control of Internet services to guarantee per-
formance and availability objectives and to minimize cost. The contribution of MoKa
is multifold. First, a utility function is defined to quantify the performance, availabil-
ity and cost of distributed Internet services. Second, a utility-aware capacity planning
method is developed; given SLA performance and availability constraints, it calculates a
configuration of the Internet service that guarantees the constraints while minimizing the
cost of the service. Third, a queuing theory-based analytic model of multi-tier Internet
services is proposed; the model accurately predicts service performance, availability and
cost, and is used as a basis of the capacity planning. Finally, an adaptive control of online
Internet services is proposed in the form of a feedback control loop that automatically
detects workload mix and workload amount variation, and reconfigures the service with
its optimal configuration.
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