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RÉSUMÉ. Les modèles de mélanges gaussiens (GMM) ont montré un très grand succès pour leur 

utilisation dans la vérification du locuteur. Le principe standard pour les modèles GMM est d'utiliser 

l'adaptation MAP des moyennes des composantes du mélange basé sur la parole d'un locuteur 

cible. Dans ce travail, nous étudions les différents modèles (GMM-UBM et GMM-SVM) et leurs 

applications à la vérification du locuteur. Pour cela, des vecteurs caractéristiques, constitués par 

les coefficients cepstraux (MFCC), extraits du signal de parole sont utilisés pour entraîner le 

modèle de mélange gaussien (GMM), dont les moyennes sont ensuite utilisées pour entrainer 

SVM. Pour les deux systèmes GMM-UBM et GMM-SVM, 2048 composantes sont utilisées pour 

construire le modèle UBM. La phase de vérification a été testée avec une base de données Aurora 

avec différents rapport signal/ bruit (SNR) et dans trois milieux bruités.  

ABSTRACT. Gaussian mixture models (GMMs) have proven extremely successful for text-

independent speaker verification. The standard training method for GMM models is to use MAP 

adaptation of the means of the mixture components based on speech from a target speaker. In this 

work we look into the various models (GMM-UBM and GMM-SVM) and their application to speaker 

verification. In this paper, features vectors, constituted by the Mel Frequency Cepstral Coefficients 

(MFCC) extracted from the speech signal are used to train the Gaussian mixture model (GMM) and 

mean vectors issued from GMM-UBM to train SVM. To fit the data around their average the 

cepstral mean subtraction (CMS) are applied on the MFCC. For both, GMM-UBM and GMM-SVM 

systems, 2048-mixture UBM is used. The verification phase was tested with Aurora database at 

different Signal-to-Noise Ratio (SNR) and under three noisy conditions. The experimental results 

showed the outperformance of GMM-SVM against GMM-UBM in speaker verification especially in 

noisy environment. 
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1. Introduction 

     In the last decade people have come forward to investigate various aspects of speech 

such as mechanical realization of speech signal, human machine interaction, speech and 

speaker recognition. Speaker verification has been a wide and attractive area of speaker 

recognition research.  We consider the problem of text-independent speaker verification. 

That is, given a test utterance, a claim of identity, and the corresponding speaker model, 

determines if the claim is true or false.  

     There are many techniques proposed to model the speakers, e.g., vector quantization 

[1], hidden Markov model [2], neural networks [3] and Gaussian Mixture Model 

[4].The standard approach to this problem is to model the speaker using an adapted 

Gaussian mixture model (GMM), which belongs to the stochastic modeling and it is 

based on the modeling of statistical variations of the features.  

     In recent years, it is more common to represent speakers with Support Vector 

Machines (SVM) [5]. SVMs have proven to be a new effective method for speaker 

recognition [6], [7]. SVMs are a natural solution to the problem, since speaker 

verification is fundamentally a two-class problem. We want to decide between the 

hypothesis that the speech is produced from the speaker or the hypothesis that the 

speech is produced from someone else in the population. SVMs perform a nonlinear 

mapping from an input space to an SVM feature space. The combination of both 

methods GMM and SVM has been viewed as an interest direction for speaker 

verification task. This approach derives a GMM-supervector [8], [9] by stacking the 

mean vectors of a MAP-adapted GMM [4] that captures the acoustic characteristics of a 

speaker. The supervector is then presented to a speaker-dependent SVM for scoring.  

     The focus of this paper is to describe a classification scheme that incorporates both 

the GMM and the SVM in a way that the robustness advantage of the statistical method 

GMM favorably combines with the discriminative power of the SVM. This scheme is 

applied on text-independent speaker verification task, under various mismatched noise 

conditions. In this way, three types of additive noise (produced by airport, train-station 

and subway) are added to speech signal issued from the Aurora database. 

     The remainder of the paper is structured as follows. In sections 2 and 3, we discuss 

the GMM and SVM classification methods and briefly describe the principles of GMM-

UBM at section 4. In section 5, the experimental protocols used in this work are 

described. In section 6, experimental results of the speaker verification in noisy 

environment using GMM-UBM and GMM-SVM systems based using Aurora database 

are presented.  Finally, a conclusion is given in Section 7. 

___________________________________________________________ 

2.   Gaussian Mixture Model (GMM) 

     In GMM model [10], there exist k underlying components { 1 , 2 , . . , k } in a 

d-dimensional data set. Each component follows some Gaussian distribution in the 
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space. The parameters of the component j  include  jjjj  ,, , in which  

j  = ( j [1], . . . , j [d]) is the center of the Gaussian distribution, j  is the 

covariance matrix of the distribution and j  is the probability of the component j . 

Based on the parameters, the probability of a point coming from component 

j appearing at    ),...,1( dxxx   can be represented by 
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Thus, given the component parameter set = { k ,...,, 21 } but without any 

component information on an observation point x , the probability of observing x  is 
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Under the assumption of independent feature vectors, the log-likelihood of a model λ for 

a sequence of feature vectors  X = { 1x , 2x ,  . . . , nx }, is computed as follows: 
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 where )/( txp is computed as in equation (2). Note that the average log-likelihood 

value is used so as to normalize out duration effects from the log-likelihood value. Also, 

since the incorrect assumption of independence is underestimating the actual likelihood 

value with dependencies, scaling by n can be considered a rough compensation factor.  

 

3.  Support Vector Machines (SVMs) 

     Support vector machine (SVM) [9] is one of the most robust classifiers in speaker 

identification. It has been applied both with spectral, prosodic, and high-level features.  

SVM has been successfully combined with GMM to increase accuracy.  
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     One reason for the popularity of SVM is its good generalization performance to 

classify unseen data. The SVM, is a binary classifier which models the decision 

boundary between two classes as a separating hyperplane. In speaker verification, one 

class consists of the target speaker training vectors (labeled as +1), and the other class 

consists of the training vectors from an „„impostor” (background) population (labeled as 

-1). Using the labeled training vectors, SVM optimizer finds a separating hyperplane 

that maximizes the margin of separation between these two classes. Formally, the 

discriminate function of SVM is given by equation below, 

.),()()(
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     The support vectors ix , their corresponding weights i  and the bias term d, are 

determined from a training set using an optimization process. The kernel function 

(.,.)K  is designed so that it can be expressed as )()(),( yxyxK T   where 

)(x  is a mapping from the input space to  kernel feature space of high 

dimensionality. The kernel function allows computing inner products of two vectors in 

the kernel feature space. In a high-dimensional space, the two classes are easier to 

separate with a hyperplane. To calculate the classification function class (x) we use the 

dot product in feature space that can also be expressed in the input space by the kernel 

[7]. SVMs were originally designed primarily for binary classification [8]. 
 

4.  Gaussian Supervector SVM 

     The supervectors of a GMM-UBM [9], are formed by concatenating the mean of 

each Gaussian component [10]. For each enrolment utterance, a GMM is trained with 

the extracted spectral features, and the corresponding supervector is obtained. Instead of 

training the GMM via EM algorithm, we adapt the GMM from a universal background 

model (UBM), which is widely used in speaker recognition. The UBM is a GMM 

trained via EM algorithm using speech from a large number of speakers. The adaptation 

of each utterance‟s GMM is performed with maximum a posteriori (MAP) algorithm , 

and only the means are adapted. Each of the corresponding Gaussian components has 

the same weight and covariance matrix, therefore the derived GMMs‟ supervectors are 

comparable in the supervector space. The GMM supervector can be considered as a 

mapping from the spectral features of an utterance to a high-dimensional feature vector. 

This mapping allows the production of features with a fixed dimension for all the 

utterances. Therefore, we can use the GMM supervectors as input for SVM learning. 
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5. Experimental protocol  

      The speech database used in this work is issued from the AURORA database. It 

consists of a set of 10 digits of the English language (zero to nine + letter O) spoken in 

sequences, by 104 speakers of both genders (52 male + 52 female) with eight sequences 

for each speaker (i.e. five sequences (104x5=520 utterances) for  training set and three 

sequences (i.e. 104x3=312 utterances) for test set). This database was recorded in “.08” 

format, with a sampling frequency equal to 8 kHz. To simulate the impostors, UBMs 

with 2048 mixture Gauss number were trained using EM to model 100 unknown 

speakers (50 female and 50 male), with five phrases spoken in English by each unknown 

speaker. To simulate the real environment we used noises specific to the database 

AURORA (train-station, airport and subway). In parameterization phase, we specified 

the feature space used. Indeed, as the speech signal is dynamic and variable, we 

presented the observation sequences of various sizes by vectors of fixed size. Each 

vector is given by the concatenation of the coefficients mel cepstrum MFCC [13] (12 

coefficients), these first and second derivatives (24 coefficients), extracted from the 

middle window every 10 ms. A cepstral mean subtraction (CMS) [10] is applied to these 

features in goal to fit the data around their average. We used a Detection Cost Function 

(DCF) and Equal Error Rate (EER) as the evaluations metric. Score normalization (T-

norm) is applied to the scores issued from the GMM-UBM model, in goal to improve 

the verification rate. To calculate the classification function class (x) in SVM model, we 

used the RBF kernel. 

___________________________________________________________ 

 

6. Experiment results 

 
6.1. Speaker verification in quiet environment using GMM-UBM      

and GMM-SVM approaches 

 
    The results in terms of Equal-Error Rate (EER) shown by the DET curve in Figure 1:  

1-   Used GMM-UBM is 8.24%. 

2-  Used GMM supper vector means adapted by MAP  estimation, as input to the 

support vectors machines SVMs (GMM/SVM) is 2.08%.  

     From the same figure, it can be observed that, the performance of the GMM/SVM is 

superior to the GMM-UBM in terms of EER. It is also noticed, the integration of GMMs 

in SVMs brings improvement in accuracy rate in quiet environment. 
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GMM-UBM: EER=8.24% .

GMM-SVM: EER=2.08% .

 

Figure 1.  Speaker verification detection error tradeoff (DET) curves for the Aurora     

corpus, tested on all 104 speakers  

6.2. Speaker verification in noisy environment using GMM-UBM 
and GMM-SVM approaches  

     The goal of the experiments doing in this section is to evaluate the verification 

performance of GMM-UBM, GMM–SVM when the quality of the speech data test is 

contaminated with different levels of different noises specified to AURORA database. 

This provides a range of speech SNRs (0, 5, 10 and 15 dB).  As expected, it is seen that 

there is a drop in accuracy for these approaches with decreasing SNR. From The table 

below, it is seen that the performance of GMM-SVM appears better than GMM-UBM. 

Because SVM scoring approach is superior to the conventional likelihood-ratio scoring 

(GMM-UBM). Indeed, the contribution of individual background speakers and the 

target speaker to the verification scores can be optimally weighted by the Lagrange 

multipliers of the target-speaker‟s SVM. Otherwise to say, maximum likelihood 

convergence does not translate to optimal classification if a priori assumptions about the 

data are not correct. So, the problem of finding the optimal decision boundary still 

remains (zone of confusion) in GMM-UBM. However, when we weight the supervectors 

issued from GMM-UBM by Lagrange multipliers i (see section 3, eq. (4)), the 

decision boundary is directly learned from the data (GSV). Otherwise, SVM eliminates 

zone of confusion between classes by finding a good hyperplan which separates classes. 
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Table 1. EERs in speaker verification for GMM–UBM and GMM–SVM under     

mismatched data conditions using real world noise. 

 

 

 

           

7.  Conclusion 

     The aim of our study in this paper was to evaluate the contribution of kernel methods 

in improving system performance of automatic speaker verification in the real 

environment, often represented by an acoustic environment highly degraded. Indeed, the 

determination of physical characteristics discriminating one speaker from another is a 

very difficult task, especially in adverse environment. For this, we developed a system 

of automatic speaker verification on text independent mode, part of which verification is 

based on classifier using GMM-UBM, especially the system hybrid GMM-SVM, which 

the vector means extracted from GMM-UBM with 2048 mixtures for UBM in step of 

modeling are inputs for SVMs in phase of decision. The results we have achieved 

                                                                GMM-UBM 

Noises 

                                                          Test data 

SNR : 0 dB SNR : 5 dB SNR : 10 dB SNR : 15 dB 

EER 

% 
minDCF 

EER 

% 
minDCF 

EER 

% 
minDCF 

EER 

% 

minDCF 

Airport 48.45 0.153 36.66  0.120 18.33   0.098 12 .56 0.074 

Train-

station 
49.33 0.193 37.33 0.153 25.67 0.101 

14.97 0.099 

Subway 46.2 0.123 25  0.123 16.33  0.088 11.08 0.061 

                                                                GMM-SVM 

Noises 

                                                         Test data 

SNR : 0 dB SNR : 5 dB SNR : 10 dB SNR : 15 dB 

EER 

% 
minDCF 

EER 

% 
minDCF 

EER 

% 
minDCF 

EER 

% 

minDCF 

Airport 7 0.094 5 .49  0.092 3.44   0.027 3.02 0.02 

Train-

station 
8.12 0.098 5.79 0.097 3.63 0.069 

3.32 0.044 

Subway 7.31 0.094 5.58 0.047 4.06 0.047 3.68 0.047 
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conform all that GMM-SVM technique is very interesting and promising especially for 

tasks such as verification in noisy environments. 
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