
X-KAAPI

Gautier Thierry and Lementec Fabien

EPI MOAIS
INRIA Rhône-Alpes
Grenoble
France
thierry.gautier@inrialpes.fr, fabien.lementec@inrialpes.fr

ABSTRACT. Programming multicore architectures becomes more and more painful: architectures
are complexes and programming models are numerous. X-KAAPI is an original parallel programming
environment that allows to describe tasks with data flow dependencies as well as parallel loops. With
X-KAAPI a programmer may write specialized code in dense linear algebra where finer data flow
synchronization seems to provide better performance, or he could write classical OpenMP code using
parallel loop. X-KAAPI compiler allows to annotate C or C++ code in order to automatically to translate
directives to calls to the runtime support. This paper presents an overview of X-KAAPI programming
model and it reports performances over three applications representative of three distinct classes. For
each of this application, X-KAAPI has same or better performances as the reference programming
environment.

RÉSUMÉ. La programmation des multicœurs dévient de plus en plus difficile : les architectures sont
complexes, les modèles de programmation multiples. Cet article présente le modèle de programma-
tion parallèle X-KAAPI qui permet, dans un cadre unifié, de décrire un ensemble de tâches avec des
dépendances de flot de données ainsi que des boucles indépendantes. Avec X-KAAPI, le program-
meur peut à la fois développer des programmes en algèbre linéaire dense où il a été montré l’intérêt à
gérer des dépendances dû à la disponibilité des données, ou bien programmer les célèbres boucles
parallèles à la OpenMP. X-KAAPI se base sur un compilateur source à source qui permet de traduire
des annotations (#pragma) d’un programme séquentiel écrit en C ou C++ en des appels au support
exécutif. Dans cet article nous présentons X-KAAPI et nous montrons ses performances sur trois
applications de trois classes bien distinctes : un micro-benchmark pour mesure le coût à créer et exé-
cuter un grand nombre de tâches ; un algorithme de factorisation de Cholesky en algbèbre linéaire ;
et enfin, sur un code industriel appelé EUROPLEXUS. Pour chacune de ces classes, X-KAAPI se
comporte aussi bien voir mieux que le logiciel de référence.

KEYWORDS : Parallel programming model. Multicore. Work stealing.

MOTS-CLÉS : Model de programmation parallèle. Multicœur. Vol de travail.

1. Introduction
Several research projects [11, 1, 15] have investigated the use of data flow graphs as

an intermediate representation of the computation of LAPACK’s algebra algorithms [6]:
the main reason was that the portability of performance in LAPACK is of the responsibil-
ity of a set of basic linear algebra subprograms (BLAS), which exhibit only a low level
parallelism that is not sufficient on multicores.

Without taking care of considerations about tile algorithms to reach good perfor-
mances, three majors points have been identified as important to perform efficient tile
algorithms [11, 1, 6]: 1/ fine granularity to reach high level of parallelism; 2/ asynchronous
execution to prevent synchronization barriers; and 3/ a dynamic data driven scheduler to
ensure the execution of tasks as soon as all their input data are produced.

Point 1/ was already mentioned since the first papers about Cilk [8] and formalized in
the Cilk performance model [5] where the parallel time is lower bounded by the critical
path: a program that cannot exploit fine grain parallelism is difficult to schedule with
guaranted linear speed up, even for a reasonable number of processors. Points 2/ and 3/
are at the basis of the execution of data flow machines [2] or languages [17, 9] that try to
schedule instructions as soon as input operands are produced.

Nevertheless, most of the recently proposed frameworks (StarSs [15], StarPU [3] or
Quark [19]), that share the data flow graph as a central representation to dynamically
schedule tasks according to their dependencies, are not able: 1/ to run programs with re-
cursive tasks creations; 2/ to mix task and parallel loops which are important for scientific
applications.

This paper presents X-KAAPI, a runtime library and a source to source compiler to
program NUMA multicore machines. X-KAAPI is based on a macro data flow graph:
the sequential code is annotated to identify functions to be transformed into tasks. Each
function that is candidate to become a task must be annotated in order to specify the ac-
cess mode (read, write, reduction, exclusive) made through its parameters to the memory.
The compiler will insert task creations and the runtime will detect the dependencies and
schedule the tasks onto the cores. Parallel loops are processed in the same way: the user
annotates loop to be parallelized, such as in OpenMP, and the runtime creates tasks on
demand in order to serve idle cores.

This paper is organized as follows. Next section describes how to install X-KAAPI.
Section 2 overviews the X-KAAPI parallel programming model and how it schedules
tasks at runtime. Section 3 reports preliminary experiments on three applications. Then,
after the presentation of related works, we conclude the paper.

2. Programming Model
The X-KAAPI’s task model [10] used in this work comes from the Athapascan [9]

task model and semantics. As for Cilk [5], Intel’s Threading Building Blocks (TBB) [16],
OpenMP-3.0 or StarSs [15], task creation is a non blocking instruction: the caller creates
the task and it continues to execute the program. Moreover, the semantic remains sequen-
tial [9]. The execution of a X-KAAPI program generates a sequence of tasks that access to
data in a shared memory. From this sequence, the runtime is able to extract independent
tasks in order to dispatch them to idle cores. This paper focus on the multicore version of
X-KAAPI.

2.1. Parallel region
X-KAAPI defines the concept of a parallel region. A parallel region is a dynamic

scope where several threads cooperate to execute created tasks. Even if the term is similar
to OpenMP parallel region, the X-KAAPI parallel region does not restrict the number of
threads that may concurrently execute tasks.

A parallel region is annotated by the directive #pragma kaapi parallel. The di-
rective must precede either a statement or a basic block of statements 1. At the end of a
parallel region, an implicit synchronization point waits for all previously created tasks.

Parallel regions may be embedded inside other parallel regions. Embedded parallel
regions share the same computing resources. Outside the outermost parallel region, only
the main thread drives the execution. The runtime selects the number of threads using
environment variables or available number of cores, see [14] for a detailed presentation.

2.2. Task
A X-KAAPI program is composed of C or C++ code and some annotations specified

by a programmer to indicate what function to use to create tasks and when they are called.

2.2.1. Task definition and creation
A task is a function call: a function that should return no value except through the

shared memory and the list of its effective parameters. The parallelism in X-KAAPI is ex-
plicit (task annotation), while the detection of synchronizations is implicit: the dependen-
cies between tasks and the memory transfers are automatically managed by the runtime.
It is of the responsibility of the programmer to annotate code.

A task implements a sequential computation whose granularity is fixed by the user; it
is created in program statements that correspond to calls to functions annotated as tasks
thanks to the #pragma kaapi task directive. Tasks share data if they have access to the
same memory region. A memory region is defined as a set of addresses in the process
virtual address space. This set has the shape of a multi-dimensional array.

The user is responsible for indicating the mode each task accesses to the memory: the
main access modes are read, write, reduction or exclusive.

The code of figure 1 illustrates the annotation of a recursive algorithm to accumulate
inputs of an array. Line 1 is the annotation of the function task accumulate. Every call to

1 #pragma kaapi ta sk va lue (n) read (a r r a y [n]) r e d u c t i o n (+ : r e s u l t)
2 void a c c u m u l a t e (i n t n , i n t∗ a r r a y , i n t ∗ r e s u l t)
3 {
4 i f (n < 2)
5 ∗ r e s u l t += a r r a y [0] ;
6 e l s e {
7 s i z e _ t med = n / 2 ;
8 a c c u m u l a t e (n / 2 , a r r a y , r e s u l t) ;
9 a c c u m u l a t e (n−n / 2 , a r r a y +med , r e s u l t) ;

10 }
11 }

Figure 1. Examples of recursive accumulation

this function is translated to task creation, such as calls at line 8 and 9. The parameter n
is declared to be passed by value; the parameter array references a 1-dimensional array

1. In C or C++ these are statements enclosed between braces (’{’ and ’}’).

of size n to be read; and the parameter result will be an accumulator where inputs are
reduced using the ’+’ operator. Test, at line 4, is for the terminal case: Here a very fine
grain is used. In real code a threshold halts the recursion.

Due to declaration, for each parameter, of the accesses mode, the X-KAAPI’s runtime
is able to analyze if two tasks have data flow dependency on a memory region.

2.2.2. Access mode of tasks and dependencies analysis
As illustrated in firgure 1, the access mode declaration defines two things. Firstly, it

defines the way task accesses to the memory (read, write, exclusive = read or write, or
cumulative, in case of reduction). Secondly, it describes the shape of the memory region
of the parameter. Supported shapes are one dimensional array (1-D array) and two dimen-
sional array (2-D array). The latter shape allows to describes sub matrix of a continuous
memory region in a similar way the BLAS which are missing in both Quark [19] or
StarSs [15, 4]. Thanks to the task’s access mode, the runtime is able to compute [9, 10].,
at runtime, concurrent tasks or to identify data flow dependency between tasks: Read af-
ter Write dependency if a task is reading a memory region that an older task writes. Also
called true dependency; Write after Write or Write after Read, called a false dependency
that may be suppressed by X-KAAPI using variable renaming [15].

2.2.3. Task synchronization
The X-KAAPI task creation is a non-blocking operation: the callee does not wait for

the task completion. This implies that a variable written by a task can be read either
by passing the variable to a task that declares to read it (see section 2.2.2); or after a syn-
chronization point, using the #pragma kaapi sync directive: it synchronizes the control
flow of the thread that creates tasks with the task executions.

2.3. Parallel loop
As in OpenMP, in X-KAAPI it is possible to annotate parallel loop, for which all

iterations are independents. The annotation is #pragma kaapi loop.
The same requirements as in OpenMP exist on X-KAAPI parallel loop: the body may

be evaluated concurrently for different iterations; condition and increment expressions
must follow restrictions. The following example illustrates a parallel accumulation:

1 #pragma kaapi l oop read (a r r a y [n]) r e d u c t i o n (+ : r e s u l t) n ow a i t
2 f o r (i n t i =0 ; i <n ; ++ i)
3 r e s u l t += a r r a y [i] ;

Such loop construct does not exists in data flow based software (StarSS, StarPU or
Quark). In X-KAAPI, a parallel loop is an adaptive task [18], i.e. a task that can be split at
runtime to generate parallelism, with the access mode for each memory region accessed
in the body must be declared.

As for task creation, a parallel loop is a non blocking instruction. By default, the
runtime adds an implicit synchronization at the end of the parallel loop. The user may
explicitly specifies the clause nowait (see above example) to avoid this synchronization.

2.4. Execution
A X-KAAPI program begins by executing the C/C++ main entry point of the process

and it initializes the X-KAAPI runtime library. When initialized, a fixed number of threads
is created and the main thread continues to execute the program. Other threads are called
worker threads. From the annotations, the X-KAAPI compiler inserts code to create tasks
or adaptive task in case of parallel loop. At runtime, each created task is pushed into a

special stack of the running thread. All ready tasks (tasks for which all inputs parameters
are not subject to a true dependency) in this stack may be stolen by idle threads. The
runtime does not compute data flow dependencies when a task is pushed. By default, they
are computed lazily by an idle thread that tries to steal ready tasks from a victim stack.

This work stealing algorithm is very close to the T.H.E protocol used in Cilk run-
time [8, 5], also used in TBB [16], where lock occurs only in rare case of execution.
Nevertheless, Cilk model does not have dependencies between tasks or adaptive tasks as
in X-KAAPI.

3. Experimental evaluation
The multicore platform used in this section is a 48 cores AMD platform (Many-

Cours) with 256GBytes of main memory. Each core frequency is 2.2Ghz.The machine
is a NUMA architecture with 8 NUMA nodes, each of them composed by 6 cores. Re-
ported times are averages over 10 runs.

3.1. Task creation time
This section is devoted to the overhead of using X-KAAPI with respect to sequential

computation. The experimentation evaluates the time to execute the X-KAAPI program of
figure 2 using 1, 8, 16, 32 and 48 cores. Sequential time is 0.091s. Figure 2 reports times
using state of the art softwares such as TBB [16] and OpenMP-3.0 (gcc 4.6).

1 #pragma kaapi ta sk w r i t e (r e s u l t) va lue (n)
2 void f i b o n a c c i (long∗ r e s u l t , c o n s t long n)
3 {
4 i f (n <2)
5 ∗ r e s u l t = n ;
6 e l s e
7 {
8 long r1 , r2 ;
9 f i b o n a c c i (&r1 , n−1) ;

10 f i b o n a c c i (&r2 , n−2) ;
11 #pragma kaapi sync
12 ∗ r e s u l t = r1 + r2 ;
13 }
14 }

#cores TBB Kaapi OpenMP

1 2.356 0.728 2.429

(slowdown:1) (x 26) (x 8) (x27)

8 0.293 0.094 51.06

16 0.146 0.047 104.14

32 0.072 0.024 (no time)

48 0.049 0.017 (no time)

a. Benchmark b. Time (second)

Figure 2. Fibonacci micro benchmark. Sequential time is 0.091s.

Benchmark codes for OpenMP or TBB are not listed but they have exactly the same
number of tasks spawned and the same synchronizations. TBB has more overhead with
respect to the sequential computation (slowdown of about 26) in comparison to X-KAAPI
(slowdown of 8). This overhead is due to higher cost to create tasks which is the key
point in this benchmark. Times of OpenMP (gcc 4.6) are very bad: the grain is to fine and
OpenMP cannot speed up the computation! The relative good time of OpenMP using 1
core is due to an artifact in the libgomp implementation of gcc, where this special case is
tested in order to degenerate task creation to standard function call.

3.2. Cholesky factorization
The Cholesky factorization is an important algorithm in dense linear algebra. In this

section, we report performances of the block version of PLASMA 2.4.2 [1]. On multicore
architecture, PLASMA relies on a runtime, called Quark [19], to manage the tasks with
data flow dependencies. Quark provides a subset of functionalities offered by X-KAAPI.
Thus, we have ported Quark on top of X-KAAPI to produce a binary compatible Quark
library, which is linked with PLASMA algorithms for X-KAAPI experimentations.

Figure 3. Gflops on Cholesky algorithm with Quark and Kaapi.

Figure 3 reports the performances (GFlop/s) with respect to the matrix size on 48 cores.
The size of the tile is NB = 128 on the left, and NB = 256 on the right. Quark imple-
ments a centralized list of ready tasks, with some heuristics to avoid accesses to the global
list. For a relative fine grain tasks (NB = 128) and due to a contention of the accesses
to global list, the Kaapi outperforms the performances of Quark. Quark will probably
limit the performance of PLASMA for the next generation of multi-core with hundreds
of cores. When the grain increases, X-KAAPI remains better but the difference decreases
because of the relative small impact of the task’s management with respect to the whole
computation.

3.3. Comparison with OpenMP on the industrial code EUROPLEXUS
EUROPLEXUS [7] is a computer code being jointly developed since 1999 by CEA

(CEN Saclay, DMT) and EC (JRC Ispra, IPSC) under a collaboration contract.
The code analyses 1-D, 2-D or 3-D domains composed of solids (continua, shells or

beams) and fluids. Fluid-structure interaction is also taken into account. The program uses
an explicit algorithm (central-difference) for the discretization in time and therefore it is
best adapted to rapid dynamic phenomena (fast transent dynamics) such as explosions,
impacts, crashes etc. The spatial discretization is mainly based on the Finite Element or
Finite Volume method.

The parallelism in EUROPLEXUS is based on parallel loops. The original multicore
version is based on OpenMP using dynamic schedule and it was extended to use X-KAAPI
parallel loop.

Figure 4 reports speedup of two parallel implementations. The OpenMP version is
based on the default static scheduling. The same cores was used in both X-KAAPI or
OpenMP. Globally, the two speedups are very close. X-KAAPI has a better speedup for a
larger number of cores (>25).

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45

T
0
 /

 T
p
ar

core count

ideal
omp_dynamic

xkaapi

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45
T

0
 /

 T
p
ar

core count

ideal
omp_dynamic

xkaapi

Figure 4. Speedups for the two internal parallel loops in EUROPLEXUS.

4. Related works
The X-KAAPI data flow programming model comes from Athapascan [9] which, it-

self, was inspired by Jade [17]. The X-KAAPI programming model and StarSs [15, 4] are
very close. The main differences are: 1/ StarSs does not allows recursive task creations;
2/ with StarSs it is not possible to define memory region of a sub-matrix of a matrix [14];
3/ StarSs does not provide support for parallel loop [18]. Quark [19] and StarPU [3] share
the same limitations of StarSs, except the possibility to define sub-matrix memory region
in StarPU.

Cilk [8] allows recursive fork-join parallel construction. Intel TBB [16] is inspired
from Cilk. With the autopartitionner, TBB adapts the task creations in parallel loop to
the thread inactivities. OpenMP has recently add the concept on task (OpenMP version
3.0, 2008) but the public gcc-4.6 implementation is far away of the performance of Cilk,
TBB or X-KAAPI. Nevertheless, none of these softwares (Cilk, TBB or OpenMP) allows
to describe finer data flow synchronizations which are important for high performance
computing in linear algebra [13].

5. Conclusions
In this paper, we overview the parallel programming model of X-KAAPI. Based on

code annotation coupled with a runtime support, X-KAAPI has important original fea-
tures: 1/ the ability to describe dependency on non contiguous memory region (required
for linear algebra subroutines) ; 2/ X-KAAPI allows task to create (recursive) tasks with
data flow dependencies; 3/ X-KAAPI mix data flow dependencies between tasks and par-
allel loop.

Section 3 report times on three different classes of applications: X-KAAPI has similar
or best performances with respect to all other tested softwares. And none of the tested
software can be used directly for all the three applications (missing data flow in TBB or
OpenMP), missing recursive task creation for StarSs, StarPU and Quark, missing parallel
loop construct in StarSS, Quark and StarPU.

Ongoing work is to make our compiler infrastructure more robust and to integrate our
past multi-CPUs multi-GPUs support [12]. Future work will deals with integrating sparse
Cholesky factorization in the EUROPLEXUS code.

References
[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, P. Ltaief, H.and Luszczek,

and S. Tomov. Numerical linear algebra on emerging architectures: The plasma and magma
projects. Journal of Physics: Conference Series, 180, 2009.

[2] Arvind and D E Culler. Dataflow architectures. Annual Review of Computer Science,
1(1):225–253, 1986.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. In Proceedings of the 15th In-
ternational Euro-Par Conference, volume 5704 of Lecture Notes in Computer Science, pages
863–874, Delft, The Netherlands, August 2009. Springer.

[4] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Ortí, and G. Quintana-Ortí.
Parallelizing dense and banded linear algebra libraries using smpss. Concurr. Comput. : Pract.
Exper., 21:2438–2456, December 2009.

[5] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations.
SIAM J. Comput., 27:202–229, February 1998.

[6] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled linear algebra
algorithms for multicore architectures. Parallel Computing, 35(1):38 – 53, 2009.

[7] Europlexus. CEA (CEN Saclay, DMT) and EC (JRC Ispra, IPSC),
http://europlexus.jrc.ec.europa.eu/.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5 multithreaded
language. In Proceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementation, PLDI ’98, pages 212–223, New York, NY, USA, 1998. ACM.

[9] F. Galilée, J.-L. Roch, G. G. H. Cavalheiro, and M. Doreille. Athapascan-1: On-line building
data flow graph in a parallel language. In Proceedings of the 1998 International Conference
on Parallel Architectures and Compilation Techniques, PACT ’98, pages 88–, Washington,
DC, USA, 1998. IEEE Computer Society.

[10] T. Gautier, X. Besseron, and L. Pigeon. Kaapi: a thread scheduling runtime system for data
flow computations on cluster of multi-processors. In PASCO’07, 2007.

[11] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: Formal Linear
Algebra Methods Environment. ACM Transactions on Mathematical Software, 27(4):422–
455, December 2001.

[12] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard. Multi-GPU and Multi-CPU Par-
allelization for Interactive Physics Simulations. In EUROPAR 2010, Ischia Naples, Italy, aug
2010.

[13] J. Kurzak, H. Ltaief, J. Dongarra, and R. Badia. Scheduling dense linear algebra operations
on multicore processors. Concurrency and Computation: Practice and Experience, Vol. 22,
no. 1:pp. 15–44, 2010.

[14] F. Le Mentec, T. Gautier, and V. Danjean. The X-Kaapi’s Application Programming Interface.
Part I: Data Flow Programming. Rapport Technique RT-0418, INRIA, December 2011.

[15] J. M. Pérez, R. M. Badia, and J. Labarta. A dependency-aware task-based programming
environment for multi-core architectures. In CLUSTER, pages 142–151. IEEE, 2008.

[16] J. Reinders. Intel threading building blocks. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, first edition, 2007.

[17] M. C. Rinard and M. S. Lam. The design, implementation, and evaluation of jade. ACM
Trans. Program. Lang. Syst., 20:483–545, May 1998.

[18] D. Traore, J.-L. Roch, N. Maillard, T. Gautier, and J. Bernard. Deque-free work-optimal
parallel STL algorithms. In EUROPAR 2008, Las Palmas, Spain, aug 2008. Springer-Verlag.

[19] A. YarKhan, J. Kurzak, and J. Dongarra. Quark users’ guide: Queueing and runtime for
kernels. Technical Report ICL-UT-11-02, University of Tennessee, 2011.

