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RESUME. Nous présentons dans ce papier une méthode Galerkin discontinu d’ordre élevé pour les
équations de I'élastodynamique en domaine temporel. Notre approche combine une interpolation
spatiale d’ordre arbitraire, des flux centrés ainsi qu'un schéma saute-mouton d’'ordre élevé pour I'inté-
gration temporelle. Des résultats numériques de la propagation d’'un mode propre 2D sont présentés
dans le cas des schémas saute-mouton d’'ordre 2 et 4. Une étude numérique de la stabilité et de
la convergence de la méthode est également proposée, montrant la précision du schéma pour des
maillages réguliers et non réguliers.

ABSTRACT. We present in this paper a high order discontinuous Galerkin method for the elastody-
namic equations in the time domain. Our approach combines an arbitrary order spatial interpolation,
centered fluxes and a high order leapfrog scheme for the time integration. Numerical results for the
propagation of a 2D eigenmode are presented for second and fourth-order leapfrog schemes. We also
propose a numerical study of the stability and the convergence of the method proving the accuracy of
the scheme for both regular and irregular meshes.
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1. INTRODUCTION

Computational seismology has become a very importantgisei for the study of
seismic wave propagation, as analytical solutions onlgtérifew simple cases like ho-
mogeneous domains or simple geometries. Various numenetiods have been deve-
lopped to solve such problems. Among them, we can mentiofiriite difference method
[14][10], the classical finite element method [9][11], theestral and pseudospectral me-
thods [8], and the finite volume method [3]. We choose to udgla-brder Discontinuous
Galerkin (DG) method applied to triangular meshes. The DGotthas been initially
introduced by Reed and Hill for the solution of the neutr@msport equation. Neglected
during many years, it is now very popular to solve hyperbplicblems. In spite of its
success in many domains of applications, this method hasiaeely applied to seismic
wave propagation problems [12]. Kasdral. ([7] and many references therein) proposed
a DG finite element scheme based on upwind fluxes and the ADBRagh in order to
solve the elastodynamic system with the same high accunapaice and time. Antonietti
et al[2] compared the Mortar spectral element method and the @@tsgd element me-
thod, both on non conforming rectangular meshes, with argkooder leapfrog scheme
for the time integration. They found that those two methaageha good accuracy while
used for the simulation of the elastodynamic equationst&gal [1] developped a new
high order method based on the "Modified Equation” techniguame, coupled with a
DG method in space for the discretisation of the additioffzduonic operator, for the
solution of the acoustic wave equation. Their results shmat the computational cost of
their scheme is the same as the one of the leapfrog scheme.

In this paper, we study the P-SV wave propagation in an ipatrdinear elastic me-
dium by solving the velocity-stress formulation of the édalynamic equations. Our me-
thod is based on centered fluxes and a leapfrog time-dizatieth which leads to a non
dissipative scheme [4]. These are the differences betwaesapproach and the one deve-
lopped by Késeet al. ([7]). According to the first results of the method preseritefd],
the time accuracy of the scheme is crucial when global highHaacy is required. Then,
we propose an extension of the leapfrog scheme to highersooflaccuracy, following a
method proposed for the Maxwell equations by Young [15] cac®pnanret al.[13] and
applied to DG methods by Fahs [5]. This method allows us téeezettemporal accuracy
to any even order desired by introducing an iterative praoed/e restrict here ourselves
to the fourth-order leap-frog scheme since we consider tadfaterpolation based on
fourth-degree polynomial functions at most. The methodpigliad to the propagation
of an eigenmode in the unit square cavity. The numericalystidhe stability and the
convergence of the method is also studied for both regulhiraegular meshes.

2. EQUATIONS AND SPATIAL DISCRETIZATION
In a linear, isotropic and infinite medium, the P-SV wave @ggtion is modelled by
the elastodynamic equation which can be written in velesitgss formulation [14]

o = VD)4 u(Vi+ (V)

where? is the velocity vectorg the stress tensop, the density of the mediund, is the
identity matrix and\ andy the Lamé coefficients describing the rheology of the medium,

related to the P- and S-wave velocitiesWy = /(X + 2u)/p andVs = \/u/p.



System (1) is closed by adding physical boundary conditidtise free surface of the
medium :g 7 = 0, wherefi is the vector normal to the free surface. External forces are
neglected.

Since the stress tensor is symmetrical, the unknown vé’E’tmay be written
W= (Va, Vyy Oz, Tyy, 0y)t @Nd (1) expresses in matrix form

AW = N A (p, A )W =0. [2]
ae{z,y}

For the spatial discretization of this system, we approxinttae physical domain by a po-
lygon (2, discretized inNp trianglesT; forming a partition of the domain. Each equation
of (2) is multiplied by a scalar test functio;bfi and integrated on each elemént The
characteristics of the mediufp, A, 1) are assumed to be constant over each eleffient
to simplify the notation, we denote Q& ¢, in what follows, the restriction of the matrix
A, (p, A\, n) to T;. Applying Green'’s identity, we obtain

/BthSk dedy+ Y Al / W On oL da dy — AT/ Wolids =0, [3]

ae{z,y}

whereii is the outward unit normal vector 6 and A" = 3, (. 3 T Ay (0, A 1)

As test functions, we choose the standard Lagrange no@apmiaintsy, * € P, (7;), set
of polynomials of degree: locally defined on the elemeif. Each componerit’ of the
vectorV is approximated off; by

W|T z,y,t ZWT )

whereN,, is the number of basis functions and also the number of degfdeeedom on
T;. Including this approximation in (3), the first term writes
N’V?‘L

d
Vh=1o N [ oW ¢ d:vdy—ZMkjd W and M7 :/ oT o1 da dy,

where M T is the mass matrix in the elemef. Following the same method for the
second integral of (3), we obtain

Vk=1,., N, zae{zy}ATv/ W 0oty dudy = > ATTZ_Q,W

ac{z,y} Jj=1
where G

Glhi = / d);ﬂ Oaty,’ dx dy .

T;
For the last term of (3), the integral &T’;, we split the boundary in internal and boundary
faces. We defineV (i) the set of the indices of the neighboring element§’0énd F;
denotes each internal face common to the eleniErasdT; (i.e. F;; = T; N'T;). Finally,
B (i) is the set of the indicelsof the faces which are common 1 and the boundary of
the domairo2. Such faces are denoted Ef =T, NnoNforl € B(i); The splitting of
the boundary leads to

AT/ Werds= > AT/ Werds+ Yy AT/ Wolids. 4]

leN (1) leB(1)



For an interior face, the associated boundary integral israomputed via the average
value on this facé/f/‘F“ = (WTi + VT/TZ) /2. For a faceF,”" on the boundary of the
domain, the free surface conditieni = 0 is introduced weakly in the second term of
(4). Finally, we define the vectofg!: (o = z,y) andsfz, (a, B = x,y) which contain
respectively theV,, values of the velocity components and the three stress components
oqp In the element;. Thus, the spatial discretisation is summarized by

4
dt

MTT%QE :GZZ'B (17) a,f=uz,y,

un Ay _pn(3)  a-ag,

[5]

whereF, andGs are discrete operators collecting the integral§pandoTs;.

3. TIME DISCRETIZATION
For the time discretization, we apply an explicit leapfragame which results, when
combined with the flux%?), in a non-dissipative scheme [4]

N
M (VO‘T) At_ (VC‘T) = FT (§n+%) a=z,y,

o\ 3 \"tE °
M (ggﬁ) 2A_t(§§ﬁ) i _ Ggﬁ (V‘n-ﬁ-l) a,B=y,

whereAt is the time step of the scheme. Note that the initialisatiothe scheme needs
the velocities at = ¢, and the stresses at tg + %. As this time discretization scheme
is only second order accurate, the global accuracy of thensetcan be penalized when
higher-degree polynomials{ > 2) are used for spatial approximation [4]. Then, we pro-
pose a higher-order leapfrog scheme following the methomhgsed for the Maxwell's
equations, by Young [15] or Spachmagtnal. [13] and applied to a DG method by Fahs
[5]. For a detailed description of the method, we introdus@gplified two equation pro-
blem whose unknowns atéx, t) ando(z, t)

dw=f (o) and dic =g(v) . [7]

From Taylor developments, we can derive a leapfrog schemsedban velocities at even
time steps and stresses at odd time steps. We rather chadis&l®the time step by two
and we obtain, for the simplified system (7)
At3
’Un+1 = " =+ At@tv’”% + 2—8tttv”+% + O(AtS) y
A (8]

ntg  _ 0’n+% —+ Atat0n+1 + ﬂatttoﬂ_‘_l + O(AtS) .

g

Firstly, the terms;v"*% andd;0™+! are evaluated using (7) at timés + 1) At
for v and(n + 1) At for 0. Considering only these derivatives in (8) and neglectirg t
higher-order terms leads to the classical second-ordpfrieascheme

Mt =™+ Atvf+% and o"t: = gnt3 + At Uerl ,
1 . . .
with v, 72 = f(o™+%) ando™+! = g(v™*1). When applied to the discrete system (5), it
is equivalent to the standard leap-frog scheme (6).



The construction of a higher order leapfrog scheme needesdbrd,,,v"* and
Oweo™ 1, obtained, as previously, by successive derivatives af \(® then obtain a
fourth-order leapfrog scheme

1 A 1 At3
’UnJrl :v"—‘,—Atvf_‘_z—i—Hl}sz and 0'"+% :0'"+%—|—At0'f+l+ﬂ0'fjl, [9]
1 1
_ ot =g (i), vptt = f (o0t
with 1 1 and . .
Vix © = f(U. 2) ) g :g(U:H_ ) :

This method is applied to (2) using the spatial discretira{b) and a fourth-order leap-
frog scheme writes

()" =) )7 () e
(52" = () e ()5 ()T e
(Vgl)fr% _ (MTi)*l FI: (gn-ﬁ-%) ’ (giw%)j+l _ (MTi)*l Gg};g (an-&—l) :
with 3 (57)"F — ) em, (v | (V)" = ety R (S
() —ey e (stt) o L(SR)L =yl ().

In practice, for a given approximation in space, the founttler leapfrog scheme needs

three times the number of arithmetic operations (to cateulee fluxes’ andG) than the

classical leapfrog scheme and twice as much memory storageadditional arrays have
oo\ "tz n+1 . .

to be defined fo(VaTi) and (55[5) . Following the same procedure, higher order

(sixth, eighth and morgj leapfrog schemes could be derived.

4. NUMERICAL RESULTS

We realize some numerical studies of the properties of ththade A mathematical
analysis of the stability and convergence of this new schisruaderway and will be the
subject of a further publication. The method has been firgliegh to the propagation of
an eigenmode. The computational domAiis the unit square and free surface boundary
conditions are applied on all boundaries. We consider tH§ (dode whose exact solution
is [6]

Vp = a coswr sinmy cosat Ozz = —b sinmx sinmy sinat
vy = —a sinmr cosmy cosat Oyy = b sinmx sinwy sinat
Opy = 0
[11]

wherea = v/27V, andb = 27u. The medium properties ape= 1, A = 0.5 andy = 0.25
leading toV,, = 1 andVs = 0.5. The initialisation of the leapfrog scheme is done from the
exact solution (11) at= 0 for v andt = % for o, At being the time step of the scheme.
The notation Pk-LFi (k=1,..., 4 and i=2 or 4) refers to a sglatiscretization based on a
polynomial basis of degréeand a classical second-order leapfrog time scheme (LF2) or
its extension (LF4).



First, in order to check numerically the stability of thefdient methods, we solve this
problem for different values of the time step. This time slepends on geometrical pro-
perties of the mesh and is proportional to a CFL value whiehdata of the simulation by
At = Ming, [CFL x h;/(V,):], a formula deduced from the optimal stability condition
for finite volumes applied to the reference triangle (as hghd where the mesh spacing
h; is the smallest edge of the triandle. We have performed such studies for all Pk-LFi
combinations and the maximum values of the CFL numbers grgpatability are given
in the table 1. The value of the CFL number depends on both dintespace schemes :
its value decreases when the spatial discretization ondeeases and time steps of the
LF4 schemes are greater than those of the LF2 schemes. Fepaog scheme, we have
CFLLF4 ~ 2.5 X% CFLLFQ.

| Time/space discretizatioh P2 | P3 | P4 |
LF2 0.2322| 0.1498| 0.0939
LF4 0.5928| 0.3821| 0.2644

Table 1. Maximum CFL number for different methods

For the convergence study of these schemes, we solve théepralsing a series of
meshes of different mesh spacihgUniform meshes are obtained by splitting quadran-
gular cells into two triangles and unstructured meshes@mstoucted via a mesher from
an uniform distribution of the nodes on the boundaries ofittraain. The mesh spacitng

is the smallest edge in the mesh. All results corresponditdisns at timef = 5.0 s. We
display, in figure 1, the?-error between computed and exact solutions as a function of
h for different schemes applied to regular (left figure) amdgular meshes (right figure)
and using the classical leapfrog scheme (LF2, first line afréig). The convergence is
second order for both types of meshes, even if the error Isvelver for the highest or-
der schemes. The use of higher degree basis function do pobdwe the convergence of
the scheme. The results for unstructured meshes are gliggtter than those for uniform
meshes. This is probably due to the choice of Delaunay meshies have well known
properties [4].

We present, in Figure 1, the same results for the fourthrdedpfrog extension (LF4,
second line of figures), for uniform (left figure) and unstured meshes (right figure).
Convergence is clearly improved when high-order time saeeane used, for both types
of meshes. In particular, for P3-LF4 and P4-LF4 methodsyatlfieorder convergence is
obtained. This proves that the use of fourth-degree basigifins (P4) is optimal when
combined to a fourth-order time scheme (LF4). In summamy,v@lues of the conver-
gence orders of the different methods, are collected ineTaland confirm the results of

the figures.
| | Mesh | LF2 | LF4 | | Mesh | LF2 | LF4 | | Mesh| LF2 | LF4 |
P2 | Unif. | 2.44| 3.04| P3| Unif. | 2.07| 3.50| P4 | Unif. | 2.00 | 4.47
Unstr. | 2.57 | 2.92 Unstr. | 2.42 | 3.03 Unst. | 2.01] 4.01

Table 2. Values of convergence orders of different methods

Finally, we examine the efficiency of the different methogslotting, in Figure 2,
for uniform meshes, the evolution of tH&-error at timet = 5.0 s as a function of the
CPU time of the simulation. For a given level of accuracy,ttike most accurate methods
(P3-LF4 and P4-LF4) are also the most efficient since thengéreor level is obtained
for lower CPU times. The ratio between the minimum and theimam CPU times to
reach the given level of accuracy, corresponding respagtio the P4-LF4 and P2-LF2
schemes is about 100. The LF4 scheme needs more operatidmgher-order schemes



are more efficient as coarser meshes can be used to reachreddesiuracy level. The
use of greater times steps in the LF4 scheme case compefmdtes extra cost due to
the multi-step procedure.
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Figure 1. Convergence study. L?-error as a function of the mesh spacing h for Pk-LF2
schemes (k=2,3,4) (first line) and Pk-LF4 schemes (second line) using uniform (left) and
unstructured meshes (right).

0.1
DG2-LF2 =t
DG2-LF4 il
DG3-LF2
001 DG3-LF4 5
DGA-LF2 b
< DG4-LF4 b
¥ 0001
% %;
2 . X
4 0.0001 N\ =
9
3 N 1y
S 1teos
N
N
16-06 %
N
1607
0.01 01 1 10 100 1000
LOG(CPU TIME)

Figure 2. Efficiency of the methods. L?-error at time ¢ = 5.0 s as a function of CPU time
for Pk-LFi schemes (k=2,3,4, i=2 or 4) (uniform meshes).

5. CONCLUSION

We proposed a fourth-order leapfrog time scheme combintidaniigh-order discon-
tinuous Galerkin method for the solution of the elastodyitaeguations. Following the
previous results obtained in [4], when global high-ordemuaacy is sought, it is worth



while to use higher-order space interpolation while kegptire classical leap-frog time

scheme since accuracy is not improved while CPU costs aredsed. This extension of
the leapfrog scheme to fourth-order (or to any even ordedifies the classical leapfrog

scheme in a multi-step procedure but where the additiorsaliscompensated by the use
of greater time steps. This method has been applied to thEagedion of an eigenmode
which permits numerical studies of stability, convergemoeuracy and efficiency of the

scheme. Note that fourth-order convergence is attaingd tivit P4-LF4 version when it

is limited to second order when the classical leapfrog sehismsed.
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