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RÉSUMÉ. Nous présentons dans ce papier une méthode Galerkin discontinu d’ordre élevé pour les
équations de l’élastodynamique en domaine temporel. Notre approche combine une interpolation
spatiale d’ordre arbitraire, des flux centrés ainsi qu’un schéma saute-mouton d’ordre élevé pour l’inté-
gration temporelle. Des résultats numériques de la propagation d’un mode propre 2D sont présentés
dans le cas des schémas saute-mouton d’ordre 2 et 4. Une étude numérique de la stabilité et de
la convergence de la méthode est également proposée, montrant la précision du schéma pour des
maillages réguliers et non réguliers.

ABSTRACT. We present in this paper a high order discontinuous Galerkin method for the elastody-
namic equations in the time domain. Our approach combines an arbitrary order spatial interpolation,
centered fluxes and a high order leapfrog scheme for the time integration. Numerical results for the
propagation of a 2D eigenmode are presented for second and fourth-order leapfrog schemes. We also
propose a numerical study of the stability and the convergence of the method proving the accuracy of
the scheme for both regular and irregular meshes.

MOTS-CLÉS : équation élastodynamique, méthode Galerkin discontinu, schéma saute-mouton, flux
centré

KEYWORDS : elastodynamic equation, discontinuous Galerkin method, leapfrog scheme, centered
scheme



1. INTRODUCTION
Computational seismology has become a very important discipline for the study of

seismic wave propagation, as analytical solutions only exist in few simple cases like ho-
mogeneous domains or simple geometries. Various numericalmethods have been deve-
lopped to solve such problems. Among them, we can mention thefinite difference method
[14][10], the classical finite element method [9][11], the spectral and pseudospectral me-
thods [8], and the finite volume method [3]. We choose to use a high-order Discontinuous
Galerkin (DG) method applied to triangular meshes. The DG method has been initially
introduced by Reed and Hill for the solution of the neutron transport equation. Neglected
during many years, it is now very popular to solve hyperbolicproblems. In spite of its
success in many domains of applications, this method has been rarely applied to seismic
wave propagation problems [12]. Käseret al. ([7] and many references therein) proposed
a DG finite element scheme based on upwind fluxes and the ADER approach in order to
solve the elastodynamic system with the same high accuracy in space and time. Antonietti
et al [2] compared the Mortar spectral element method and the DG spectral element me-
thod, both on non conforming rectangular meshes, with a second order leapfrog scheme
for the time integration. They found that those two methods have a good accuracy while
used for the simulation of the elastodynamic equations. Agut et al [1] developped a new
high order method based on the "Modified Equation" techniquein time, coupled with a
DG method in space for the discretisation of the additional biharmonic operator, for the
solution of the acoustic wave equation. Their results show that the computational cost of
their scheme is the same as the one of the leapfrog scheme.

In this paper, we study the P-SV wave propagation in an isotropic, linear elastic me-
dium by solving the velocity-stress formulation of the elastodynamic equations. Our me-
thod is based on centered fluxes and a leapfrog time-discretization which leads to a non
dissipative scheme [4]. These are the differences between our approach and the one deve-
lopped by Käseret al. ([7]). According to the first results of the method presentedin [4],
the time accuracy of the scheme is crucial when global high-accuracy is required. Then,
we propose an extension of the leapfrog scheme to higher orders of accuracy, following a
method proposed for the Maxwell equations by Young [15] or Spachmannet al. [13] and
applied to DG methods by Fahs [5]. This method allows us to achieve temporal accuracy
to any even order desired by introducing an iterative procedure. We restrict here ourselves
to the fourth-order leap-frog scheme since we consider a spatial interpolation based on
fourth-degree polynomial functions at most. The method is applied to the propagation
of an eigenmode in the unit square cavity. The numerical study of the stability and the
convergence of the method is also studied for both regular and irregular meshes.

2. EQUATIONS AND SPATIAL DISCRETIZATION
In a linear, isotropic and infinite medium, the P-SV wave propagation is modelled by

the elastodynamic equation which can be written in velocity-stress formulation [14]
{

ρ∂t~v = ∇ · σ,

∂tσ = λ(∇ · ~v)I + µ(∇~v + (∇~v)t),
[1]

where~v is the velocity vector,σ the stress tensor,ρ the density of the medium,I is the
identity matrix andλ andµ the Lamé coefficients describing the rheology of the medium,
related to the P- and S-wave velocities byVP =

√

(λ + 2µ)/ρ andVS =
√

µ/ρ.



System (1) is closed by adding physical boundary conditionsat the free surface of the
medium :σ ~n = ~0, where~n is the vector normal to the free surface. External forces are
neglected.

Since the stress tensor is symmetrical, the unknown vector~W may be written
~W = (vx, vy, σxx, σyy, σxy)

t and (1) expresses in matrix form

∂t ~W −
∑

α∈{x,y}

Aα(ρ, λ, µ) ∂α ~W = 0 . [2]

For the spatial discretization of this system, we approximate the physical domain by a po-
lygonΩ, discretized inNT trianglesTi forming a partition of the domain. Each equation
of (2) is multiplied by a scalar test functionφTi

k and integrated on each elementTi. The
characteristics of the medium(ρ, λ, µ) are assumed to be constant over each elementTi ;
to simplify the notation, we denote byATi

α , in what follows, the restriction of the matrix
Aα(ρ, λ, µ) to Ti. Applying Green’s identity, we obtain
∫

Ti

∂t ~W φTi

k dx dy +
∑

α∈{x,y}

ATi

α

∫

Ti

~W∂αφ
Ti

k dx dy −ATi

n

∫

∂Ti

~W φTi

k ds = 0 , [3]

where~n is the outward unit normal vector toTi andATi

n =
∑

α∈{x,y} nα Aα (ρ, λ, µ).

As test functions, we choose the standard Lagrange nodal interpolantsφTi

k ∈ Pm(Ti), set
of polynomials of degreem locally defined on the elementTi. Each componentW of the
vector ~W is approximated onTi by

W|Ti
(x, y, t) =

Nm
∑

j=1

WTi

j (t) φTi

j (x, y) ,

whereNm is the number of basis functions and also the number of degrees of freedom on
Ti. Including this approximation in (3), the first term writes

∀k = 1, .., Nm

∫

Ti

∂t ~W φTi

k dx dy =

Nm
∑

j=1

MTi

kj

d

dt
~WTi

j andMTi

kj =

∫

Ti

φTi

j φTi

k dx dy ,

whereMTi is the mass matrix in the elementTi. Following the same method for the
second integral of (3), we obtain

∀k = 1, .., Nm

∑

α∈{x,y}A
Ti

α

∫

Ti

~W ∂αφ
Ti

k dx dy =
∑

α∈{x,y}

ATi

α

Nm
∑

j=1

GTi

α,kj
~WTi

j

where GTi

α,kj =

∫

Ti

φTi

j ∂αφ
Ti

k dx dy .

For the last term of (3), the integral on∂Ti, we split the boundary in internal and boundary
faces. We defineN (i) the set of the indices of the neighboring elements ofTi andFil

denotes each internal face common to the elementsTi andTl (i.e.Fil = Ti ∩ Tl). Finally,
B (i) is the set of the indicesl of the faces which are common toTi and the boundary of
the domain∂Ω. Such faces are denoted byFBi

l = Ti ∩ ∂Ω for l ∈ B(i) ; The splitting of
the boundary leads to

ATi

n

∫

∂Ti

~W φTi

k ds =
∑

l∈N(i)

ATi

n

∫

Fil

~W φTi

k ds+
∑

l∈B(i)

ATi

n

∫

F
Bi

l

~W φTi

k ds . [4]



For an interior face, the associated boundary integral termis computed via the average

value on this face~W|Fil
=

(

~WTi + ~WTl

)

/2. For a faceFBi

l on the boundary of the

domain, the free surface conditionσ ~n = ~0 is introduced weakly in the second term of
(4). Finally, we define the vectors~V Ti

α (α = x, y) and ~STi

αβ (α, β = x, y) which contain
respectively theNm values of the velocity componentsvα and the three stress components
σαβ in the elementTi. Thus, the spatial discretisation is summarized by











MTi
d

dt
~V Ti

α = FTi

α

(

~S
)

α = x, y ,

MTi
d

dt
~STi

αβ = GTi

αβ

(

~V
)

α, β = x, y ,

[5]

whereFα andGαβ are discrete operators collecting the integrals onTi and∂Ti.

3. TIME DISCRETIZATION
For the time discretization, we apply an explicit leapfrog scheme which results, when

combined with the flux (??), in a non-dissipative scheme [4]


























MTi

(

~V Ti

α

)n+1

−
(

~V Ti

α

)n

∆t
= FTi

α

(

~Sn+ 1

2

)

α = x, y ,

MTi

(

~STi

αβ

)n+ 3

2 −
(

~STi

αβ

)n+ 1

2

∆t
= GTi

αβ

(

~V n+1
)

α, β = x, y ,

[6]

where∆t is the time step of the scheme. Note that the initialisation of the scheme needs
the velocities att = t0 and the stresses att = t0 +

∆t
2 . As this time discretization scheme

is only second order accurate, the global accuracy of the scheme can be penalized when
higher-degree polynomials (m > 2) are used for spatial approximation [4]. Then, we pro-
pose a higher-order leapfrog scheme following the method, proposed for the Maxwell’s
equations, by Young [15] or Spachmannet al. [13] and applied to a DG method by Fahs
[5]. For a detailed description of the method, we introduce asimplified two equation pro-
blem whose unknowns arev(x, t) andσ(x, t)

∂tv = f (σ) and ∂tσ = g (v) . [7]

From Taylor developments, we can derive a leapfrog scheme based on velocities at even
time steps and stresses at odd time steps. We rather choose todivide the time step by two
and we obtain, for the simplified system (7)











vn+1 = vn + ∆t∂tv
n+ 1

2 +
∆t3

24
∂tttv

n+ 1

2 + O(∆t5) ,

σn+ 3

2 = σn+ 1

2 + ∆t∂tσ
n+1 +

∆t3

24
∂tttσ

n+1 + O(∆t5) .
[8]

Firstly, the terms∂tvn+
1

2 and∂tσn+1 are evaluated using (7) at times
(

n+ 1
2

)

∆t
for v and(n+ 1)∆t for σ. Considering only these derivatives in (8) and neglecting the
higher-order terms leads to the classical second-order leapfrog scheme

vn+1 = vn +∆t v
n+ 1

2

⋆ and σn+ 3

2 = σn+ 1

2 +∆t σn+1
⋆ ,

with v
n+ 1

2

⋆ = f(σn+ 1

2 ) andσn+1
⋆ = g(vn+1). When applied to the discrete system (5), it

is equivalent to the standard leap-frog scheme (6).



The construction of a higher order leapfrog scheme needs values for∂tttvn+
1

2 and
∂tttσ

n+1, obtained, as previously, by successive derivatives of (7). We then obtain a
fourth-order leapfrog scheme

vn+1 = vn+∆t v
n+ 1

2

⋆ +
∆t3

24
v
n+ 1

2

⋆⋆ and σn+ 3

2 = σn+ 1

2 +∆t σn+1
⋆ +

∆t3

24
σn+1
⋆⋆ , [9]

with







σ
n+ 1

2

• = g
(

v
n+ 1

2

⋆

)

,

v
n+ 1

2

⋆⋆ = f
(

σ
n+ 1

2

•

)

,
and

{

vn+1
• = f

(

σn+1
⋆

)

,

σn+1
⋆⋆ = g

(

vn+1
•

)

.

This method is applied to (2) using the spatial discretization (5) and a fourth-order leap-
frog scheme writes















(

~V Ti

α

)n+1

=
(

~V Ti

α

)n

+∆t
(

~V Ti

α

)n+ 1

2

⋆
+

∆t3

24

(

~V Ti

α

)n+ 1

2

⋆⋆
α = x, y ,

(

~STi

αβ

)n+ 3

2

=
(

~STi

αβ

)n+ 1

2

+∆t
(

~STi

αβ

)n+1

⋆
+

∆t3

24

(

~STi

αβ

)n+1

⋆⋆
α, β = x, y ,

[10]

with



























(

~V Ti

α

)n+ 1

2

⋆
=

(

MTi

)−1
FTi

α

(

~Sn+ 1

2

)

,
(

~STi

αβ

)n+ 1

2

•
=

(

MTi

)−1
GTi

α,β

(

~V
n+ 1

2

⋆

)

,
(

~V Ti

α

)n+ 1

2

⋆⋆
=

(

MTi

)−1
FTi

α

(

~S
n+ 1

2

•

)

,























(

~STi

αβ

)n+1

⋆
=

(

MTi

)−1
GTi

α,β

(

~V n+1
)

,
(

~V Ti

α

)n+1

•
=

(

MTi

)−1
FTi

α

(

~Sn+1
⋆

)

,
(

~STi

αβ

)n+1

⋆⋆
=

(

MTi

)−1
GTi

α,β

(

~V n+1
•

)

.

In practice, for a given approximation in space, the fourth-order leapfrog scheme needs
three times the number of arithmetic operations (to calculate the fluxesF andG) than the
classical leapfrog scheme and twice as much memory storage since additional arrays have

to be defined for
(

~V Ti

α

)n+ 1

2

⋆⋆
and

(

~STi

αβ

)n+1

⋆⋆
. Following the same procedure, higher order

(sixth, eighth and more) leapfrog schemes could be derived.

4. NUMERICAL RESULTS
We realize some numerical studies of the properties of the method. A mathematical

analysis of the stability and convergence of this new schemeis underway and will be the
subject of a further publication. The method has been first applied to the propagation of
an eigenmode. The computational domainD is the unit square and free surface boundary
conditions are applied on all boundaries. We consider the (1,1) mode whose exact solution
is [6]

vx = a cosπx sinπy cos at σxx = −b sinπx sinπy sin at
vy = −a sinπx cosπy cos at σyy = b sinπx sinπy sin at

σxy = 0
[11]

wherea =
√
2πVs andb = 2πµ. The medium properties areρ = 1,λ = 0.5 andµ = 0.25

leading toVp = 1 andVS = 0.5. The initialisation of the leapfrog scheme is done from the
exact solution (11) att = 0 for v andt = ∆t

2 for σ, ∆t being the time step of the scheme.
The notation Pk-LFi (k=1,..., 4 and i=2 or 4) refers to a spatial discretization based on a
polynomial basis of degreek and a classical second-order leapfrog time scheme (LF2) or
its extension (LF4).



First, in order to check numerically the stability of the different methods, we solve this
problem for different values of the time step. This time stepdepends on geometrical pro-
perties of the mesh and is proportional to a CFL value which isa data of the simulation by
∆t = MinTi

[CFL × hi/(Vp)i], a formula deduced from the optimal stability condition
for finite volumes applied to the reference triangle (as in [4]) and where the mesh spacing
hi is the smallest edge of the triangleTi. We have performed such studies for all Pk-LFi
combinations and the maximum values of the CFL numbers ensuring stability are given
in the table 1. The value of the CFL number depends on both timeand space schemes :
its value decreases when the spatial discretization order increases and time steps of the
LF4 schemes are greater than those of the LF2 schemes. For anyspace scheme, we have
CFLLF4 ≃ 2.5× CFLLF2.

Time/space discretization P2 P3 P4

LF2 0.2322 0.1498 0.0939
LF4 0.5928 0.3821 0.2644

Table 1. Maximum CFL number for different methods

For the convergence study of these schemes, we solve the problem using a series of
meshes of different mesh spacingh. Uniform meshes are obtained by splitting quadran-
gular cells into two triangles and unstructured meshes are constructed via a mesher from
an uniform distribution of the nodes on the boundaries of thedomain. The mesh spacingh
is the smallest edge in the mesh. All results correspond to solutions at timet = 5.0 s. We
display, in figure 1, theL2-error between computed and exact solutions as a function of
h for different schemes applied to regular (left figure) and irregular meshes (right figure)
and using the classical leapfrog scheme (LF2, first line of figures). The convergence is
second order for both types of meshes, even if the error levelis lower for the highest or-
der schemes. The use of higher degree basis function do not improve the convergence of
the scheme. The results for unstructured meshes are slightly better than those for uniform
meshes. This is probably due to the choice of Delaunay mesheswhich have well known
properties [4].

We present, in Figure 1, the same results for the fourth-order leapfrog extension (LF4,
second line of figures), for uniform (left figure) and unstructured meshes (right figure).
Convergence is clearly improved when high-order time schemes are used, for both types
of meshes. In particular, for P3-LF4 and P4-LF4 methods, a fourth-order convergence is
obtained. This proves that the use of fourth-degree basis functions (P4) is optimal when
combined to a fourth-order time scheme (LF4). In summary, the values of the conver-
gence orders of the different methods, are collected in Table 2 and confirm the results of
the figures.

Mesh LF2 LF4 Mesh LF2 LF4 Mesh LF2 LF4

P2 Unif. 2.44 3.04 P3 Unif. 2.07 3.50 P4 Unif. 2.00 4.47
Unstr. 2.57 2.92 Unstr. 2.42 3.03 Unst. 2.01 4.01

Table 2. Values of convergence orders of different methods

Finally, we examine the efficiency of the different methods by plotting, in Figure 2,
for uniform meshes, the evolution of theL2-error at timet = 5.0 s as a function of the
CPU time of the simulation. For a given level of accuracy, thetwo most accurate methods
(P3-LF4 and P4-LF4) are also the most efficient since the given error level is obtained
for lower CPU times. The ratio between the minimum and the maximum CPU times to
reach the given level of accuracy, corresponding respectively to the P4-LF4 and P2-LF2
schemes is about 100. The LF4 scheme needs more operations but higher-order schemes



are more efficient as coarser meshes can be used to reach a desired accuracy level. The
use of greater times steps in the LF4 scheme case compensatesfor the extra cost due to
the multi-step procedure.
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Figure 1. Convergence study. L2-error as a function of the mesh spacing h for Pk-LF2
schemes (k=2,3,4) (first line) and Pk-LF4 schemes (second line) using uniform (left) and
unstructured meshes (right).
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Figure 2. Efficiency of the methods. L2-error at time t = 5.0 s as a function of CPU time
for Pk-LFi schemes (k=2,3,4, i=2 or 4) (uniform meshes).

5. CONCLUSION
We proposed a fourth-order leapfrog time scheme combined with a high-order discon-

tinuous Galerkin method for the solution of the elastodynamic equations. Following the
previous results obtained in [4], when global high-order accuracy is sought, it is worth



while to use higher-order space interpolation while keeping the classical leap-frog time
scheme since accuracy is not improved while CPU costs are increased. This extension of
the leapfrog scheme to fourth-order (or to any even order) modifies the classical leapfrog
scheme in a multi-step procedure but where the additional cost is compensated by the use
of greater time steps. This method has been applied to the propagation of an eigenmode
which permits numerical studies of stability, convergence, accuracy and efficiency of the
scheme. Note that fourth-order convergence is attained with the P4-LF4 version when it
is limited to second order when the classical leapfrog scheme is used.
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