

 A R I M A

Primary inter-patterns relationships analysis

Asma HACHEMI

Computer science department

USTHB

BP 32 El Alia, Bab Ezzouar 16111 Algiers

ALGERIA

ashachemi@usthb.dz

Mohamed AHMED-NACER

Computer science department

USTHB

BP 32 El Alia, Bab Ezzouar 16111 Algiers

ALGERIA

anacer@mail.cerist.dz

ABSTRACT. The relationships between patterns allow to combine several patterns, in order to
solve complex problems that are not treated by a single pattern. Unfortunately, it is difficult to
identify these relations if they are not explicit in each pattern. In this case, and taking into
consideration the growing number of patterns, the manual analysis of inter-patterns relationships is
a daunting activity. Thus, we present in this paper our approach that improves an existing method
of automatic relations analysis. This automatic method treats relationships between patterns, from
different catalogs and from different forms. We extend this method so that it can treat the primary
inter-patterns relationships Uses and Refines.

KEYWORDS: Inter-patterns relationship, primary relationships, relations analysis, automatic
analysis, Refines, Uses.

2 A R I M A

A R I M A

1. Introduction

A software pattern offers a proven solution to solve a recurrent problem in the
software engineering field. Concerning the complex problems which are not treated by a
single pattern, the relationships between patterns allow to combine several patterns, in
order to get a solution to this kind of problems. Unfortunately, it is difficult to identify
inter-patterns relationships if they are not explicit in each pattern. This difficulty puts
patterns into a disadvantage, since it discourages the reuse of patterns. Thus, patterns
will be better served by an automatic approach that can treat any number of patterns
(belonging to different collections or expressed in different forms), in order to analyze
relationships between them.

We present in this paper our improvement of an automatic method which analyzes
inter-patterns relationships. That method is the first automatic approach treating inter-
patterns relationships on patterns from different catalogs or from different forms. We
extend that method so that it can treat the primary inter-patterns relationships Uses and
Refines. So, the present paper is structured as follows : we introduce the primary inter-
patterns relationships in section 2. Section 3 presents a method for automatic analysis of
relations. Our approach for the automatic analysis of the primary relations Uses and
Refines is explained in section 4. Finally, we conclude this paper and give some
research perspectives in section 5.

2. Primary relationships between software patterns

Inter-patterns relationships represent the links that may exist between patterns. They
are on the basis of patterns composition. Their role is to indicate which patterns can
function together and in which manner, so one can combine patterns in order to solve a
problem which is not treated by a single pattern. Primary relationships between patterns
[1] are ubiquitous relations in the literature, are on the basis of the definition of other
relations and their definitions are straightforward [1]. Thus, primary relations must have
priority (over other relations) in any work dealing with inter-patterns relationships.

Many researchers focused their interests on inter-patterns relationships :
– W. Zimmer [2] is the first to define relations between object oriented design
patterns ; he used in his work the GoF patterns [3]. Other studies have followed, like
[4], [5], [6], [7], [8], [9] and [10], which were also interested in inter-patterns
relationships. However, all those works define the relationships but cannot extract
them if they are not explicitly expressed in patterns.
– Prabhakar et al. propose a graphical model called DDTM [11] based on Design
Decisions [12] [13], in order to represent design patterns and analyze relationships

Primary inter-patterns relationships analysis 3

A R I M A

between them. However, this work is limited to design patterns only (it cannot be
applied on other kind of software patterns).
– The method of Kubo et al. [14] is the first automatic approach able to analyze
relations between patterns, without being limited to a particular kind of patterns. We
are particularly interested in this method (and present it in the following section),
because it is the only approach able to analyze relations on patterns belonging to
different catalogs and on patterns expressed in different forms. Moreover, it is the
only method dealing with any kind of patterns and treating process patterns [15].

3. A method for automatic analysis of relations

Kubo et al. method [14] is based on a new pattern model, uses many text processing
techniques, and uses the cosine similarity to analyze relations between patterns. It
represents a pattern application as a context transition from a starting context to a
resulting context, and includes the pattern forces in the model (because patterns that
differ only in term of forces are considered as different patterns). It targets patterns
described with HTML, and considers seven types of relations between patterns [14]
[16], namely : Starting-Starting, Resulting-Resulting, Resulting-Starting, Same,
SubInStarting, SubInResulting, SimilarForce.

However, the method [14] presents the following main drawback : it analyzes little
known relationships like Resulting-Resulting [14], SubInStarting [16], SubInResulting
[16], SimilarForce [16], whereas the two primary relationships Uses and Refines can’t
be treated.

– Uses is a very important relationship which is defined in many works like [2], [5],
[6], [8], [9] [10], [11], [17], [19]. It links many patterns, for instance : Distinguish
Identities pattern uses Component Proxy pattern, Component Home pattern and
Managed Resource pattern [17]. The process pattern Review uses three other process
patterns, namely Introductional Session pattern, Review Session pattern and Release
pattern [8]. Unfortunately, the relation Uses can’t be analyzed by [14].

– Refines relates many patterns, for example : Two refinements of the process
pattern Capture A Common Vocabulary exist, namely the Capture Vocabulary
Centrally pattern and the Capture Vocabulary Participatorily pattern [8]. The
Iterator pattern [3], the Type-safe Session pattern [20] and the Accumulator pattern
[21] all refine [1] the Curried Object abstract pattern [22]. The Refines primary
relationship is defined in several works like [6], [7], [8], [9] [10], [11], [17], but
can’t be analyzed by [14].

4 A R I M A

A R I M A

4. Our approach

Our approach towards an automatic way to analyze the primary relations between
patterns is based on the Kubo et al. method [14]. This latter is based on several text
processing techniques (stop word removal [23], stemming [24], the TFIDF term
weighting method [25], vector space model [23] and the cosine similarity).
Unfortunately, the analysis of the primary relations Uses and Refines is not possible with
[14], as explained earlier. Thus, an added value of our approach is the possibility to
analyze the primary relations Uses and Refines.

Our approach uses the pattern model of [14], that enables us to treat most
heterogeneous patterns (expressed in different forms) automatically, and uses an
auxiliary which is the analysis of the Inclusion.

The existence of Inclusion between two texts means that in addition to being similar,
one of these texts contains the other. Let’s have two texts T1 and T2 consisting of one or
more terms. T1 is Included in T2 means that the following two conditions are true :

– T1 is similar to T2, to signify that the terms of T1 exist in T2, which means that
T2 treats of T1 subject.
– T2 is larger than T1, to signify that T2 contains T1 in addition to another content.

For example, let’s have these two texts : “Provide an interface for creating families of
related or dependent objects without specifying their concrete classes” and “Providing
an interface to create objects”. We calculate the Inclusion between them as follows :
First of all, we calculate the size of each text after eliminating stop words. We obtain
Size of Text1 = 9 terms, Size of Text2 = 4 terms. Then, we compare the sizes and we
notice that the first text is larger than the second one by 0,550 (the ratio of the sizes
difference to the size of the largest text). After that, we calculate the cosine similarity
between the two texts. We obtain the value 0,537. Finally, given that those two texts are
similar (their similarity value is larger than the Similarity threshold) and the first one is
larger than the second (their difference of sizes is larger than the Sizes Difference
threshold), then we conclude that the first text Includes the second.

4.1. Analysis of the relation Uses

The Uses relationship is defined as follows. P1 and P2 are two patterns expressed in
the model of Kubo et al.. P1 Uses P2 means that the following two conditions are true :

– The P2 Starting Context is Included in the P1 Starting Context, to mean that the
problem addressed by P2 is a sub problem of that treated by P1.
– The P2 Resulting Context is Included in the P1 Resulting Context, to mean that the
result produced by applying the pattern P2 is a sub set of the result produced by the
application of pattern P1.

Primary inter-patterns relationships analysis 5

A R I M A

For example, we consider the pattern Code Ownership [26] (called P2) which Uses
the pattern Review [26] (called P1). This relationship is given by the author of these
patterns, so we consider it as correct and process the analysis using our method.
First, we compare the different elements of the two patterns P1 and P2. We note SC the
element Starting Context and RC the element Resulting Context of a pattern. We obtain
the following results :

Compared Elements Results

SC of P1 and SC of P2
Similarity = 0,095
SC of P1 includes SC of P2 = False
SC of P2 includes SC of P1 = True

RC of P1 and RC of P2
Similarity = 0,240
RC of P1 includes RC of P2 = False
RC of P2 includes RC of P1 = True

Forces of P1 and
Forces of P2

Similarity = 0,127
Forces of P1 includes Forces of P2 = False
Forces of P2 includes Forces of P1 = False

RC of P1 and SC of P2 Similarity = 0,040
RC of P2 and SC of P1 Similarity = 0

Table 1. Results of comparisons between patterns elements

Then, we calculate from Table 1 the value of each relationship between those patterns.
For the relationships Same, Starting-Starting and Resulting-Starting, we uses the
analysis method of Kubo et al.. Whereas for the relationships Uses and Refines, we
exploit our propositions given respectively in the previous and following paragraphs.
We obtain the following results :

Relationship Its value
P1 Uses P2 0
P1 Refines P2 0
P2 Uses P1 0,167
P2 Refines P1 0
Same 0,167
Starting-Starting 0,095
Resulting-Starting (P1 then P2) 0
Resulting-Starting (P2 then P1) 0

Table 2. Results of relations analysis

6 A R I M A

A R I M A

Finally, as in [14] the strongest relation among the eight types (P1 Uses P2, P1 Refines
P2, P2 Uses P1, P2 Refines P1, Same, Starting-Starting, Resulting-Starting (P1 then
P2), Resulting-Starting (P2 then P1)) is assumed as the representative relationship. So
the pattern P2 Uses the pattern P1.

4.2. Analysis of the relation Refines

The Refines relationship is defined as follows. P1 and P2 are two patterns expressed
in the model of Kubo et al.. P2 Refines P1 means that the following tree conditions are
true :

– The P2 Starting Context is similar to the P1 Starting Context, to mean that both
patterns P1 and P2 deal with the same problem.
– The P1 Starting Context doesn’t Include the P2 Starting Context, to insure that the
pattern P1 (the pattern being refined) doesn’t deal with a problem larger than the one
dealt by the pattern P2.
– The P1 Forces is Included in the P2 Forces, to mean that constraints imposed on
pattern P1 represent a sub set of the constraints imposed on the pattern P2.

For example, we consider the pattern Head-Body [18] (called P1) which Refines the
pattern Separate Metadata and Data [18] (called P2). This relationship is given by the
author of these patterns, so we consider it as correct and process the analysis using our
method. We compare the elements of P1 and P2 and obtain the following results:

Compared Elements Results

SC of P1 and SC of P2
Similarity = 0,342
SC of P1 includes SC of P2 = False
SC of P2 includes SC of P1 = False

RC of P1 and RC of P2
Similarity = 0,040
RC of P1 includes RC of P2 = False
RC of P2 includes RC of P1 = True

Forces of P1 and
Forces of P2

Similarity = 0,746
Forces of P1 includes Forces of P2 = True
Forces of P2 includes Forces of P1 = False

RC of P1 and SC of P2 Similarity = 0,056
RC of P2 and SC of P1 Similarity = 0,070

Table 3. Results of comparisons between patterns elements

After that, we calculate the value of each relationship between those patterns using
Table 3. The results are as follows :

Primary inter-patterns relationships analysis 7

A R I M A

Relationship Its value
P1 Uses P2 0
P1 Refines P2 0,554
P2 Uses P1 0
P2 Refines P1 0
Same 0
Starting-Starting 0,342
Resulting-Starting (P1 then P2) 0
Resulting-Starting (P2 then P1) 0,070

Table 4. Results of relations analysis

Finally, considering the strongest relationship, we conclude that the pattern P1 Refines
the pattern P2.

5. Conclusion and perspectives

We presented in this paper our approach that analyzes primary relationships between
patterns. Our contribution is based on the automatic method of Kubo et al. and on the
analysis of Inclusion, in order to extract the primary relationships.

Some improvements are under work to ameliorate our approach of relations analysis.
Mainly :

– The vector space model used for the calculation of similarity assumes
independence between terms, which is not always true because two different terms
may be synonymous. So the method can be extended to recognize synonyms.
– Our contribution can be extended to offer the functionality of Patterns Retrieval,
which offers for a particular problem all available patterns that treat it.

6. References

[1] J. Noble, “Classifying Relationships Between Object-Oriented Design Patterns,” Australian Software
Engineering Conference, Adelaide, South Australia, November 09-13, 1998.

[2] W. Zimmer, “Relationships between design patterns,” In Pattern Languages of Program Design,
Addison-Wesley, 1994.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design patterns: elements of reusable object-oriented
software,” Addison-Wesley, 1995.

[4] R. Deneckere, C. Souveyet, “Organising and selecting patterns in pattern languages with Process
Maps,” OOIS'01, Canada, 2001.

[5] M. Gnatz, F. Marschall, G. Popp, A. Rausch, W. Schwerin, “The Living Software Development
Process,” Journal Software Quality Professional, Volume 5, Issue 3, June 2003.

8 A R I M A

A R I M A

[6] G. Meszaros, J. Doble, “A Pattern Language for Pattern Writing,” PLoP, 1997.

[7] K. Henney, “Patterns Inside Out,” Talk presented at Application Development, London, 1999.

[8] M. Hagen, V. Gruhn, “Process patterns - A means to describe processes in a flexible way,”
International Workshop on Software Process Simulation and Modeling, Edinburgh, U K, 2004.

[9] D. Rieu, J.P. Giraudin, C. Saint Marcel, A. Front-Conte, « Des opérations et des relations pour les
patrons de conception, » Inforsid’99, 1999.

[10] A. Conte, M. Fredj, J.P. Giraudin, D. Rieu, « P-Sigma : un formalisme pour une représentation unifiée
de patrons, » Inforsid, Genève, 2001.

[11] T.V. Prabhakar, K. Kumar, “Design Decision Topology Model for Pattern Relationship Analysis,”
Asian PLOP 2010 Tokyo, 16-17 March 2010.

[12] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice,” AddisonWesley, 2003.

[13] P. Kruchten, “An ontology of architectural design decisions in software intensive systems,” In 2nd
Groningen Workshop on Software Variability, pp. 54-61, December 2004.

[14] A. Kubo, H. Washizaki, A. Takasu, Y. Fukazawa, “Analyzing Relations among Software Patterns based
on Document Similarity,” Proc. IEEE Internationale Conference on Information Technology : Coding
and Computing, 2005.

[15] H. Washizaki, A. Kubo, A. Takasu, Y. Fukazawa, “Relation analysis among patterns of software
development process,” PROFES 2005, LNCS 3547, pp. 299-313, 2005.

[16] H. Washizaki, A. Kubo, A. Takasu, Y. Fukazawa, “Extracting Relations among Security Patterns,” 1st
International Workshop on Software Patterns and Quality SPAQu07, 2007.

[17] M. Volter, “Server-side components - A pattern language,” In proceedings of EuroPLoP, 2000.

[18] “Develop effective XML documents using structural design patterns,” http://www.xmlpatterns.com/

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, M. Stal, “Pattern-oriented software
architecture - A System of Patterns,” Volume 1, Wiley and Sons, 1996.

[20] N. Pryce, “Type-safe session,” In EuroPLOP Proceedings, 1997.

[21] P. M. Yelland, “Creating host compliance in a portable framework: A study in the use of existing design
patterns,” In OOPSLA Proceedings, 1996.

[22] J. Noble, “Arguments and results,” In PLOP Proceedings, 1997.

[23] G. Salton, M. McGill, Introduction to Modern Information Retrival, McGraw-Hill Inc., N Y, 1983.

[24] C. Paice, “Another stemmer,” SIGIR Forum, Vol. 24, No. 3, pp. 56–61, 1990.

[25] G. Salton, C. Yang, “On the specification of term values in automatic indexing,” Journal of
Documentation, Vol. 29, pp. 351–372, 1973.

[26] J.O. Coplien, “A Development Process Generative Pattern Language,” In Proceedings of the Annual
Conference on the Pattern Languages of Programs PLoP’94, 1994.

