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ABSTRACT. Given a real-time system specification, the satisfiability problem is to decide the exis-
tence of a system that models the specification, and eventually to synthesise a witness system. Usu-
ally, the systems are required to be deterministic. This paper consider the deterministic-satisfiability
problem for the timed p-calculus called Event-Recording Logic (ERL). ERL is adapted for specifying
timed properties of real-time systems described with Event-Recording Automata (ERA). Thus, we
want to know whether there exists a procedure that decides whether ERL formulae have determin-
istic ERA models. Assuming some restrictions on the timing resources of models, we propose an
EXPTIME decision procedure. The general case is left open.

RESUME. Etant donnée une spécification de systémes temps-réel, il est important de décider de
I’existence d'un systéme qui la modélise ou la satisfait, et éventuellement construire un modeéle: c’est
le probléme de satisfaisabilité. En pratique, les systemes sont déterministes. Event-Recording Logic
(ERL) est une adaptation temporisée du p-calcul pour décrire les propriétés des systémes temps-réel
modélisés par des Event-Recording Automata (ERA). Nous étudions la satisfaisabilité-déterministe
de ERL : nous voulons décider de I'existence de modéles ERA déterministes. Il s'agit d’'une étude
pionniére sur la recherche de modeles déterministes d’extensions temporisées du p-calcul. Nous
proposons des regles de tableaux qui permettent un raisonnement inductif pour la décision. Lorsque la
granularité des modeéles est donnée a I'avance, nous proposons un algorithme de décision EXPTIME.
La décision est laissée ouverte lorsque la granularité n’est pas connue.
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1. Introduction

The satisfiability problem (SAT) amounts to decide whetlystems specifications can
be modelled/implemented, and eventually to synthesisees#t models/implementations.
Very often, only deterministic systems are of our interettis is the d-satisfiability
(DSAT) problem . Formal methods consider temporal logiecsnidae for specifying the
systems modelled with transitions systems. We considerTiSAthe timed Branching-
Time Temporal Logic (BTTL) called Event-Recording LogidRE) [8].

SAT and DSAT has been studied for varieties of untimed anddiBiT TL and models.
The Kozen'sp-calculus [5] is one of the most studied untimed BTTL and idequate
for Kripke Structures. SAT and DSAT for the-calculus areEXPTIME Complete and
the synthesis of witness models is effective [7]. An inténgsproof for the (determinis-
tic) satisfiability is based on the notion of tableau. Tableare proof trees constructed
by applying reduction rules and Rabin/parity automata aegltio check well-foundeness
properties over paths of tableaux [7]. Besides, Timed Awatan{TA) [1] and Event-
Recording Automata (ERA) [2] are famous timed extension§rigke Structures. They
use constraints to restrict the firings of actions and ttenmsi. Constraints compare real-
valued clock variables with rationals. ERA are less exjveshan TA [2]. But ERA are
determinizable and closed under Boolean operations,ikesKrripke Structures. Unfor-
tunately, there are few decidable results for tipedalculus. SAT forl,, WT,, are still
open [4, 6] and SAT of a fragment of }/Tcontaining ERL iSEXPTIME Complete [6].
ERL is more expressive than MECS [3]. Early tableau-basedita procedures for the
fragment of WT, and ERL [8, 6] allow to build witness non deterministic ERA dets.

We consider DSAT for ERL. Awkwardly, building deterministmodels by deter-
minizing non deterministic ones (obtained from [8, 6]) i acorrect solution. Indeed,
determinization procedures (for example [2]) do not preséranching-time properties.
But, adapting former [7, 8, 6] tableau-based proceduresSé&IDfor ERL (and proba-
bly SAT for WT,,, SAT for £,) is not immediate. In [8, 6], non deterministic models
compare clocks with constants specified in formulae only.a8uwe will show, determin-
istic models may required constant not specified in formuldeus, we provide tableau
rules adapted for the case when the constants are also giaelvance. In this case, our
tableau-based procedure allows to decide DSAT.

The paper is organised as follows: ERA and ERL are defineddaméxt section. In
Section 3, we present technical constructions, includdgipns and normalised formulae.
In section 4, we define two systems of rules for SAT and DSA&nttve present their
properties. We provide a decision procedure for paraneetri3SAT. Due to the paper
format, intuitions are preferred to the long proofs. Setbaconcludes the paper.

2. Definitions

In the sequeE = {a,b, ...} denotes a set of actiongar = {X,Y,...} denotes a
finite set of variables, and the time domdiris the sefR>( of non negative real numbers.

Clocks, Constraints. In the context of ERA and ERL, we consid&y, = {z,,xp,...}
the set of clocks. A clock, refers to the actiom. A clock valuationv : X — T
assigns to each clock a time value. The set of clock valugi®denoted byl™. Given
d € T, the valuation(v + ¢) is defined by:(v + 0)(z) = v(z) + ¢ for everyz € Xx.
Forz’ € Xy, v[z’ := 0] denotes the valuation such th&t[z’ := 0])(2’) = 0 and for



eachz € Xy \ {2'}, (v[z' := 0])(z) = v(x). The valuation denoted by maps every
clock to zero andt= {v + § | § € T}. The set ofconstraintsover Xx;,, denoted by
C(%), is defined by the grammap“:= zx1c | g A g | " wherex € X5, ¢ € Q¢ IS
a non negative rationakie {<, >, >, <,=} andt stands for true. We write = g (or
v € [¢]) when the valuatiom satisfiesy, using the standard semantics.

History clock timed transition system (HCTTS). AHCTTS is a tupleS = (Q, ¢°, T* x

¥, 7, —) whereQ is the set of stateg is the initial state, the function : Q@ — T*
assigns a valuation to every state and the transitiono@latiC Q x (T* x X)) x Q is such
that: ¢ =% ¢ if v € 7(¢)t andn(¢') = 7(q)[za := 0]. We say thatS is deterministic
(DHCTTS) iff for every(q,v,a) € Q x T* x X there is at most one outgoing transition
from ¢ labelled with(v, a).

Event-recording logic (ERL). The formulae of ERL [8] are defined by the following
grammar:p =t | £ | X | eAe | eVellgae| (ga)e | vX.e | uX.owhere
g €C(X).

ForaHCTTSS = (Q, ¢°, T* x E, 7, —) an assignmen? : Var — P(Q), the semantics
of a formulay unders, [¢]$ is the set of states for which the formula holds:

- [[[g,a]go]]i ={qeQ|Vyq 2 d v E g,impliesq’ € [[90]]6}

-[{g, )¢l :={g € Q| 3¢ == ¢'stv |- g Aandy’ € [¢]5}

— The semantics of the other operators is standard.
We say thatS modelsy, denoted bys = ¢ iff ¢° € [¢]3.

We consider standard notions of sentences, binding defisiBd,, (X) and the older
relation order between variables [7, 6].

Deterministic event-recording automata.An ERAis a tupled = (L 4, %, X5, 3, E 1)
whereL4 andE4 C L4 x C(X) x ¥ x L4 are finite sets ofocationsand edges
respectively. The initial location i€). For an edge = ¢ 2% ¢, we definesrc(e) = ¢,
tgt(e) = ¢, g. = g, o(e) = a. The semantics ofl is the HCTTSS 4 = (Q 4, ¢%, T* x
E,ma,—)WhereQa = (La x T%), ¢% = (¢%,0), m4(¢,v) = v, and the transitions in

— are such that(/, v) —% (¢, v'[x, := 0]) iff there existt L% ¢/ € E4,v' € vt such
thatv’ |= g. We say that4 is deterministigDERA) if S 4 is deterministic. The semantics
defines the crossing of the edges. Each transition corrdspionan elapse of the time
followed by an the crossing of an edgand the firing of the actioa(e), provided that
o(e) € X occurs when the constraipt is satisfied. The history clock, associated to
a € ¥ measures the time elapsed since the last occurrence of

Satisfiability (SAT and DSAT). A ERL formulap is satisfiable(resp. d-satisfiablg is
there exists an ERA (resp. DER#)s.tS 4 = . Thesatisfiability (resp. d-satiafiablity)
problem SAT (resp. DSAT) amounts to decide whether ERL formulaesatéfiable
(resp. d-satiafiable) and eventually to construct witnesdets.

Examples. Examples of constraints, ERA4{ and.43), DERA (A4, and.4,) and ERL
formulae appear in Figure 1. The formuyla requires to firex afterb and sometimes for-
bid any firing ofa afterb. The formulaep,, ¢5 are greatest fixpoint formulae describing
liveliness properties or “infinite repetitions” of;. In particular,p, states that the re-
quirements ofp; must be satisfied after each firinglofObserve thatl; = ;. Besides,
Ai = o2 even if its initial location/; has no outgoing edge labelled with We also
observe that the ERM; = ¢3, A2 = @3, A3 modelsp, andps. Finally, we observe
that the DERAA, modelsyps, but it does not modelg,. Later we discuss why, is
satisfiable, but not d-satisfiable.



g1 :=(0<z, <1Ags)

g2:=(0< 1z < 1Age) 1I
931:(%<95a<11/\96) @ gs,b
n0<n <t @) ©
g5::%<xb<1 ‘ 92,

g6 =0<mp <1 _> g3, b

(a) Examples of constraints (b) DERA A, (c) DERA A4

A; (resp.As) = “replace botty; andgs (resp.g4 andgs) by g1 in As (resp..A4)”
p1:= (91,00 2= [tt, aJfE @1 :=vX.(g1,b)(t,a)tt A (g2, b)[tt, alF A [tE, D)X

3 := (g1,b) (£, a)tt A (g1, b)[tt,a]E 5 := “replace botly; andgs with gg in 4"
(e) Examples of ERL formulae

FIGURE 1: Examples of ERA, DERA and ERL formulae

3. Region-based Normalised representations and semantics

Granularity. A granularity is a measure of rational constants used intcaings. A
granularity is a pair(d, M) € N x N. Let¢& = (di, My) andés = (de, M3) be two
granularities:(; is finer thané, and we writeg; < & if 3k € N* s.tdy = k x d; and

My > M. Thesumé; @ & is the granularityfiem(dy, d2), Max(My, Ms)) wherelem
stands for the least common multiple. A rationat Q>( can be produced by granularity
(d, M) iff » < M and there exist € N such that = %. The granularity of a constrained
objectO, o is the less fine granularity used for producing the constaedsrring in the
constraints. We denote Iy (X)), the set of constraints of granulargyERA; and DERA

¢ denotes the set of ERA and DERA with the granulaity

RegionsGiven a granularit = (d, M), two clock valuations are equivalent of they
satisfy the same constraints@a(X), when the time elapses or when clocks are reset. The
region [1] of a valuatiom, [v], is the set of valuations equivalentio The set of regions is
denoted byReg (%). Note that the size aReg:(X) isin O(21¥]). Given[v]e € Rege (%),

we define théu] 1= {[v'+0]¢ | V' € [v]¢, 0 € T} and([v]e)[ze := 0] = {[v'[z4 = 0]]¢ |

v’ € [v]¢}, the regions reachable frofn|. after the time elapsing and the resetigf
Figure 2(a) presents the regions for= (1,1) and ., 2

¥ = {a,b}. A region is a black point, a trian-
gle, a half line or an open space. A region is de-|
finable with constraints involving comparisons be- Ta
tween two clocks. Let the regiory = (z, = 1
0Az, =0). Theregion := (0 <z, <1A0< @ &= (1,1) ) € = (2,1)

xp < 1 Az, —xp = 0) is the immediate time suc-

cessor ofg andry := (0 < 2o <1Azp =0A0 <  Figure 2: Regions with® = {a, b}
xq —xp < 1) equals [z, := 0].

&-atomic constraint#\ £-atomic constraint is a smallest constrainCi(X); it is a con-
straint of the form/\weXE e: Wheree, is of the formx > M, x = M, z = ¢,
c<x<c+ é with ¢ < M. Note that any regiofv] is included in a uniqué-atomic
constrainty such that = g. We can show that [6], for any constraiptany granularity
& =< &,, g can be decomposed into a $&t(g) of disjoints¢,-atomic constraints.

Abstract representations for ERA. A ¢-abstract representation for an ERA is the
kripke structuréRS, = (L x Rege(X), (£°,[0]¢),Cc(2) x %, —) where the transitions

DO [Fa—m
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betweenabstractstates are such that?, [v]¢) LALN @, ([v']e)[z(e) = 0]) whenever
there exis{v']¢ € ([v]¢1), e = £ L% ¢ such thafv']: C [¢'] andg’ is atomic. As in [6],
we can show that for any ERA, any granularity < £ 4, S 4 is isomorphic toSRa.

Normalised formula N¢ (). Ne(¢) is constructed fronp by replacing each subformula
of the form(g, a)p (resp.[g, a] Ne (@) With \V, () (', &) Ne () (€SP g . ([0 a169)-
As in [6], we can show that for any sentengeany ERAA, any granularlt)é = &,
(€,v) € [l * iff (¢,v) € [Ne(0)]

Abstract semantics for ERL. The abstract semantics of () is defined by performing
an equality test between the constraints and the actiomimnuiae and the constraints and
action labelling the transitions of ERAi(g, a))™ = {¢ | 3(¢,g,a,0) € Exstl €
()™} and([g, alp)™ = {£ | V(¢,g,a,0) € E4itholds that’ € (©)™}. Observe that
this semantics is similar to the Kozenpiscalculus semantics [7], where ERL and ERA are
considered ag-calculus and Kripke structure over the alphafgg(X) x X). According

to Proposition 3.1, one can adapt the model-checking resuhep-calculus to ERL by
choosing a granularity finer than those of the formula andefRA.

Proposition 3.1. Foreveryé < (&, & &a4), A | ¢iff (£°,]0]) € <[N£(<,0)]>Ri‘

In the sequel, we consider normalised formulae only.

4. Tableau for SAT and DSAT with ERL

We adapt the rules for the-calculus [7] to ERL by adding timing information. ERL
is a kind of Kozen'su-calculus augmented with clock constraints. We proposgatiin-
based and region-based rules for SAT and DSAT.

Clock valuation-based systems of rules for ERL (NR and DR)In Figure 3, we pro-
pose two clock valuation-based systems of rules for ERER and DR. The first system
adapted for SATS R is composed of five standard rules, (\, v, u, reg), the rulestime
andtmod. The second system adapted for DSATR is composed of the standard rules,
the rulestime andtdmod. Each rule reduces the satisfiability checking of formutae i
its conclusion (below the line of the rules) to the satisfigbthecking of formulae in
its premises (above the line). The rule time, tmod anddtmod have more than one
premise. Except the ruleeg, which abstracts the computation of fixpoint formulae, all
the other rules reduce the size of formulae in their conelusi

{90179027F}a {@(X),F},U {QO(X),F},’U -0

T ngntho" Xe() o™ X e 99 BheX) = oXe(X)
{o(X),I'}v ») {1, T} {wz,F};v(v) I;v;7,  foreachr, Gfu(Fo)(m.me)

{vX.p(X),T}Ho {1 V2, T}Hv v

U] lnal e T hiulea =0 { Cheremet

T (tmod)
B for eachw; € vt
(| (<)%[3>Z}]5;pl(w) i (v 4 8)[xq = 0] { for eachu € £ s.t
; v (g,a)p € 771 (v;)

tdmod
o7 (tdmod)

FiIGURE 3: Valuations-based tableau rules for ERL



Let us briefly comment the non standard rules. The titee allows to choose the re-
duction time for existential modalities of the forfy, a). It considers the set of functions
Fu(I'y) of the formr, : 'y — T assigning a reduction time to ea¢f a)p € Ly
such that’ = 7,({(g, a)p) implies that’ € v1 andv’ = g. We definel’y = {(g,a)¢ |
(g,a)p € T} andl', = {[g,a]p | [g,a]lp € T Av = g}. The ruletmod applies the
reduction and adds a premise for each subfornyla)y in I'y according to its reduc-
tion time given byr((g,a)y). The reduction is “non deterministic” since two premises
are created for two subformulae with equal reduction tinTég ruletdmod performs a
“deterministic reduction” and adds one premise for eaclssubf subformulae reduced
in equal times and with a same action. Observe thatd, tdmod are timed extensions
of the following rules defined for the-calculus:

e U {1 | [a]y € T'},for eacHa)p € F(mod)

I
{¢ | (a)y € Torlaly € T}, foreachn € Xs.t3(a)p €T
r

(dmod)

Tableaux, trace and pre-models These notions are adapted from [7, 6]. Giv&R
or DR, avaluation-based tableator an ERL formulay is a tree the root of which is
labelled with{¢}; 0 and the nodes is obtained by applying the rules. We requatetie
rule time is applicable when no standard rule is applicable; the ritesi, tdmod are
applied just after the ruleime. Given a rule (for example), the reduced formula with
the valuation (for example; V s) in conclusion is linked to its subformula (for example
(1 Or ) with the valuation in a premise: a succession of such lirddinds atrace of
the reduction of a formula along a path of a tableau. A vaeidbregenerates on a trace
iff some node and its successor are labelled wittand o(X) respectively. Av-trace
(resp. au-trace) is either finite and neither (resp. either) ends Witmor (resp. or) with
a formula of the form{g, a)¢, or is infinite and the oldest variable that is regenerated
infinitely often is av-variable (respu-variable). Apre-models a sub-tableau obtained
by selecting exactly one premise for each node at which tleeror time is applied, so
that there is nqu-trace in the remaining paths.

Given a formulap, let 7 (¢) andDT (p) denote the tableaux far constructed using
N R andD R respectively. Guided by the proofs of similar results ind6f after we have
adapted the concept signature we can prove the following propositions.

Lemma 4.1. A HCTTS models aBRL formulay iff there is a pre-model iff ().

Let us sketch the proof. Foe(), we assume that here is a HCTBSwvhich models
¢. We constructy (¢), then we mark the nodes with the statesSo&nd we select the
premises of the nodes at which the rier time is applied according to the signature
property. SinceS modelsy, the subtree composed of the selected nodes is a pre-model.
For (<), we construct a HCTTS from the pre-model and we show thA{y) does not
contain a pre-model i§ does not modep, leading to a contradiction.

Lemma 4.2. ADHCTTS models aBRL formulay iff there is a pre-model iDT ().

Note that checking the existence of a pre-modéT{ip) or DT (p) may not be decid-
able since, contrarily to the case of thecalculus, the labels of the nodes range over an
infinite set (valuations occur labels). Moreover, the shettthe proof above construct
witness HCTTS which models. So, it is not immediate that the existence of pre-models
in 7 (¢) or DT () leads to a decision procedure for SAT and DSAT since we wart ER
or DERA model. For these reasons, we consider abstract rules



;70 foreach € ©,(I')

Tor (timeg)
e for eachr; € rt
¢U L] [nalu € Dhindan =0 { (S ET
T g (tmody)
T

for eachu € ¥ s.t
<ga a>g0 € 9_1(7"1')

for eachr; €
{¥ [ (g,a) € 6= (rs) or[g,aly € T};ri[aa = 0]

T d (tdmody)

FIGURE 4: Regions based tableau rules for ERL

Region-based tableaux for ERL (VR(£) and DR(E)). Timing context in regions-based
rules are regions parametrised with a granulgity¥he rules forVR(£) and DR(E) are
composed of standard rules A, v, u, reg and the rules in Figure 4 inspired by the rules
in Figure 3. A functiord,. € ©,(I'\y) in the ruletime is such that’ = 6,.((g,a)p)
implies and~’ C [g¢]. Then, we define region-based tableaux similarly to vatuabiased
tableaux and we consider a similar notion of well-foundeithpa

Given a granularity and a formulap, 7 (¢, &) andDT (¢, ) denote the tableaux for
¢ constructed with the rules df R(£) and DR () respectively.

Lemma 4.3.

- Itis decidable andEXPTIME whether7 (¢, &) or DT (¢, £) contains a pre-model.

- If T (e, &) contains a pre-model thef(p, ') contains a pre-model for evegy < ¢.
-If DT (p, &) contains a pre-model theRT (i, &) contains a pre-model for evegy < €.

For example, let us consider; in Figure 1(e). Clearlyt,, = (1,1). Figure 5
shows fragments of (3, &, ) andDT (3, &y,,) (The rule time is hidden). Observe that
T (¢3,&45) has a pre-model. BuD7 (y3,&,,) has no pre-model, since all the traces
end with f£. However, using the region map in Figure 2(b) one can easibck that
DT (¢3,(2,1)) contains a pre-model. This example provide a proof of Lemrddlow.

Lemma 4.4. There is a formulap such thatD7 (¢, £,) does not contains a pre-model
and for somé& = &, DT (¢, &) contains a pre-model.

Decidability results. We can provide, following [6], a proof of Proposition 4.1. €h
proposition reduces SAT to the pre-model checking probteffi(ip, &,).

Proposition 4.1. A formulay is satisfiable iff7 (¢, £,) contains a pre-model.

Proposition 4.1 asserts that the granularity of a formuknisugh to solve SAT. But,
this is not true for DSAT (see Lemma 4.4). However, we get togigl result of Proposi-
tion 4.2 by adapting our proof of Proposition 4.1.

Proposition 4.2. A formulay is d-satisfiable with eDERA ¢ iff DT (¢, ) contains a
pre-model.

ly: {T.t};’l“4

o {{t,a)tt};re L3t {[t, a]fE}; 7o . v

() () otk (e B

3 lon D)8, ) A G Dl i (oDl (e, ol o
(@) 7a:&e0) @ DTles )

ly: {ff};T4
63: {'U:, ff};T4

FIGURE 5: Tableaux forps



Using, Lemma 4.3, we get a partial decidability result forADSvhen the granularity
of the model is known in advance.

Theorem 4.1. Given anERL formula ¢ and a granularityé, there is a procedure that
checks whether there existf&RA ; that satisfiesp.

Let us end the section by giving some links between tabledwahstract tableau.
Corollary 4.1. T () contains a pre-model iff (¢, £,) contains a pre-model

Corollary 4.1 is a consequence of Proposition 4.1. BE,(p, &) can not be used
to decide whetheD7 () contains a model (see Lemma 4.5). Moreover, deciding the
existence of pre-models in valuation-based tableaux is museful result for DSAT.

Lemma 4.5. There exists a formula such thatD7 (¢) contains a pre-model, and for
everyé < &, DT (¢, &) does not contains a pre-model.

Formulay, (see Figure 1(e)) is a witness formula for Lemma 4.5. Indéenl aach
firing of b we need an additional constant to separate the instantsielh wishould be
fired from those at which it should not. Since the processaeyiafinitely often, there
number of required constants is infinite and it can not be geed by a granularity.

5. Concluding remarks

We have considered the DSAT problem for ERL. We have proptsedystems of
rules: the valuation-based and regions-based systems.aVéedstablished relations be-
tween the two systems. We have shown that the valuation [systein can not be used
to decide DSAT and the region-based system allow to decid&TD¥@en the constants
of the models is known in advance. In case of unknown corst@BAT is left open.
Future work in this direction consider abstract rules omlgt the rules should handle the
introduction of new constants in deterministic models.
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