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ABSTRACT. Given a real-time system specification, the satisfiability problem is to decide the exis-
tence of a system that models the specification, and eventually to synthesise a witness system. Usu-
ally, the systems are required to be deterministic. This paper consider the deterministic-satisfiability
problem for the timed µ-calculus called Event-Recording Logic (ERL). ERL is adapted for specifying
timed properties of real-time systems described with Event-Recording Automata (ERA). Thus, we
want to know whether there exists a procedure that decides whether ERL formulae have determin-
istic ERA models. Assuming some restrictions on the timing resources of models, we propose an
EXPTIME decision procedure. The general case is left open.

RÉSUMÉ. Étant donnée une spécification de systèmes temps-réel, il est important de décider de
l’existence d’un système qui la modélise ou la satisfait, et éventuellement construire un modèle: c’est
le problème de satisfaisabilité. En pratique, les systèmes sont déterministes. Event-Recording Logic
(ERL) est une adaptation temporisée du µ-calcul pour décrire les propriétés des systèmes temps-réel
modélisés par des Event-Recording Automata (ERA). Nous étudions la satisfaisabilité-déterministe
de ERL : nous voulons décider de l’existence de modèles ERA déterministes. Il s’agit d’une étude
pionnière sur la recherche de modèles déterministes d’extensions temporisées du µ-calcul. Nous
proposons des règles de tableaux qui permettent un raisonnement inductif pour la décision. Lorsque la
granularité des modèles est donnée à l’avance, nous proposons un algorithme de décision EXPTIME.
La décision est laissée ouverte lorsque la granularité n’est pas connue.
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1. Introduction

The satisfiability problem (SAT) amounts to decide whether systems specifications can
be modelled/implemented, and eventually to synthesise witness models/implementations.
Very often, only deterministic systems are of our interest:this is the d-satisfiability
(DSAT) problem . Formal methods consider temporal logics formulae for specifying the
systems modelled with transitions systems. We consider DSAT for the timed Branching-
Time Temporal Logic (BTTL) called Event-Recording Logic (ERL) [8].

SAT and DSAT has been studied for varieties of untimed and timed BTTL and models.
The Kozen’sµ-calculus [5] is one of the most studied untimed BTTL and it isadequate
for Kripke Structures. SAT and DSAT for theµ-calculus areEXPTIME Complete and
the synthesis of witness models is effective [7]. An interesting proof for the (determinis-
tic) satisfiability is based on the notion of tableau. Tableaux are proof trees constructed
by applying reduction rules and Rabin/parity automata are used to check well-foundeness
properties over paths of tableaux [7]. Besides, Timed Automata (TA) [1] and Event-
Recording Automata (ERA) [2] are famous timed extensions ofKripke Structures. They
use constraints to restrict the firings of actions and transitions. Constraints compare real-
valued clock variables with rationals. ERA are less expressive than TA [2]. But ERA are
determinizable and closed under Boolean operations, just like Kripke Structures. Unfor-
tunately, there are few decidable results for timedµ-calculus. SAT forLν , WTµ are still
open [4, 6] and SAT of a fragment of WTµ containing ERL isEXPTIME Complete [6].
ERL is more expressive than MECS [3]. Early tableau-based decision procedures for the
fragment of WTµ and ERL [8, 6] allow to build witness non deterministic ERA models.

We consider DSAT for ERL. Awkwardly, building deterministic models by deter-
minizing non deterministic ones (obtained from [8, 6]) is not a correct solution. Indeed,
determinization procedures (for example [2]) do not preserve branching-time properties.
But, adapting former [7, 8, 6] tableau-based procedures to DSAT for ERL (and proba-
bly SAT for WTµ, SAT for Lν ) is not immediate. In [8, 6], non deterministic models
compare clocks with constants specified in formulae only. But as we will show, determin-
istic models may required constant not specified in formulae. Thus, we provide tableau
rules adapted for the case when the constants are also given in advance. In this case, our
tableau-based procedure allows to decide DSAT.

The paper is organised as follows: ERA and ERL are defined in the next section. In
Section 3, we present technical constructions, including regions and normalised formulae.
In section 4, we define two systems of rules for SAT and DSAT; then we present their
properties. We provide a decision procedure for parametrised DSAT. Due to the paper
format, intuitions are preferred to the long proofs. Section 5 concludes the paper.

2. Definitions

In the sequelΣ = {a, b, . . .} denotes a set of actions,Var = {X,Y, . . .} denotes a
finite set of variables, and the time domainT is the setR≥0 of non negative real numbers.

Clocks, Constraints. In the context of ERA and ERL, we considerXΣ = {xa, xb, . . .}
the set of clocks. A clockxa refers to the actiona. A clock valuationv : XΣ → T

assigns to each clock a time value. The set of clock valuations is denoted byTΣ. Given
δ ∈ T, the valuation(v + δ) is defined by:(v + δ)(x) = v(x) + δ for everyx ∈ XΣ.
For x′ ∈ XΣ, v[x′ := 0] denotes the valuation such that,(v[x′ := 0])(x′) = 0 and for



eachx ∈ XΣ \ {x′}, (v[x′ := 0])(x) = v(x). The valuation denoted by0 maps every
clock to zero andv↑= {v + δ | δ ∈ T}. The set ofconstraintsoverXΣ, denoted by
C(Σ), is defined by the grammar “g ::= x ⊲⊳ c | g ∧ g | tt” wherex ∈ XΣ, c ∈ Q≥0 is
a non negative rational,⊲⊳∈ {<,>,≥,≤,=} andtt stands for true. We writev |= g (or
v ∈ JgK) when the valuationv satisfiesg, using the standard semantics.

History clock timed transition system (HCTTS).A HCTTS is a tupleS = 〈Q, q0,TΣ×
Σ, π,→〉 whereQ is the set of states,q0 is the initial state, the functionπ : Q → T

Σ

assigns a valuation to every state and the transition relation→⊆ Q×(TΣ×Σ)×Q is such
that: q

v,a
−−→ q′ if v ∈ π(q)↑ andπ(q′) = π(q)[xa := 0]. We say thatS is deterministic

(DHCTTS) iff for every(q, v, a) ∈ Q ×TΣ × Σ there is at most one outgoing transition
from q labelled with(v, a).

Event-recording logic (ERL). The formulae of ERL [8] are defined by the following
grammar :ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | [g, a]ϕ | 〈g, a〉ϕ | νX.ϕ | µX.ϕ where
g ∈ C(Σ).
For a HCTTSS = 〈Q, q0,TΣ×E, π,→〉 an assignmentV : Var → P(Q), the semantics
of a formulaϕ underS, JϕKSV is the set of states for which the formula holds:

– J[g, a]ϕKSV := {q ∈ Q | ∀q
v,a
−−→ q′, v |= g, impliesq′ ∈ JϕKSV}

– J〈g, a〉ϕKSV := {q ∈ Q | ∃q
v,a
−−→ q′ s.tv |= g ∧ andq′ ∈ JϕKSV}

– The semantics of the other operators is standard.
We say thatS modelsϕ, denoted byS |= ϕ iff q0 ∈ JϕKSV .

We consider standard notions of sentences, binding definitionsBdϕ(X) and the older
relation order between variables [7, 6].

Deterministic event-recording automata.An ERA is a tupleA = 〈LA, ℓ
0
A,XΣ,Σ, EA〉

whereLA andEA ⊆ LA × C(Σ) × Σ × LA are finite sets oflocationsand edges,
respectively. The initial location isℓ0A. For an edgee = ℓ

g,a
−−→ ℓ′, we definesrc(e) = ℓ,

tgt(e) = ℓ′, ge = g, σ(e) = a. The semantics ofA is the HCTTSSA = 〈QA, q
0
A,T

Σ ×
E, πA,→〉 whereQA = (LA × TΣ), q0A = (ℓ0A,0), πA(ℓ, v) = v, and the transitions in

→ are such that:(ℓ, v)
v′,a
−−→ (ℓ′, v′[xa := 0]) iff there existℓ

g,a
−−→ ℓ′ ∈ EA, v′ ∈ v↑ such

thatv′ |= g. We say thatA is deterministic(DERA) if SA is deterministic. The semantics
defines the crossing of the edges. Each transition corresponds to an elapse of the time
followed by an the crossing of an edgee and the firing of the actionσ(e), provided that
σ(e) ∈ Σ occurs when the constraintge is satisfied. The history clockxa associated to
a ∈ Σ measures the time elapsed since the last occurrence ofa.

Satisfiability (SAT and DSAT). A ERL formulaϕ is satisfiable(resp. d-satisfiable) is
there exists an ERA (resp. DERA)A s.tSA |= ϕ. Thesatisfiability (resp. d-satiafiablity)
problem, SAT (resp. DSAT) amounts to decide whether ERL formulae aresatiafiable
(resp. d-satiafiable) and eventually to construct witness models.

Examples. Examples of constraints, ERA (A1 andA3), DERA (A2 andA4) and ERL
formulae appear in Figure 1. The formulaϕ3 requires to firea afterb and sometimes for-
bid any firing ofa afterb. The formulaeϕ4, ϕ5 are greatest fixpoint formulae describing
liveliness properties or “infinite repetitions” ofϕ3. In particular,ϕ4 states that the re-
quirements ofϕ3 must be satisfied after each firing ofb. Observe thatA1 |= ϕ1. Besides,
A1 |= ϕ2 even if its initial locationℓ1 has no outgoing edge labelled witha. We also
observe that the ERAA1 |= ϕ3, A2 |= ϕ3, A3 modelsϕ4 andϕ5. Finally, we observe
that the DERAA4 modelsϕ5, but it does not modelsϕ4. Later we discuss whyϕ4 is
satisfiable, but not d-satisfiable.



g1 := (0 < xa < 1 ∧ g6)
g2 := (0 < xa <

1
2 ∧ g6)

g3 := (12 < xa < 1 ∧ g6)
g4 := 0 < xb <

1
2

g5 := 1
2 < xb < 1

g6 := 0 < xb < 1

(a) Examples of constraints

ℓ1

ℓ2ℓ3

ℓ4

g3, b

g2, b

tt, a

(b) DERAA2

ℓ1

ℓ2ℓ3

ℓ4

g4, bg5, b

tt, ag5, b

g4, b

g5, b

g4, b

(c) DERAA4

A1 (resp.A3) := “replace bothg2 andg3 (resp.g4 andg5) by g1 in A2 (resp.A4)”

ϕ1 := 〈g1, b〉tt ϕ2 := [tt, a]ff ϕ4 := νX.〈g1, b〉〈tt, a〉tt ∧ 〈g2, b〉[tt, a]ff ∧ [tt, b]X
ϕ3 := 〈g1, b〉〈tt, a〉tt ∧ 〈g1, b〉[tt, a]ff ϕ5 := “replace bothg1 andg2 with g6 inϕ4”

(e) Examples of ERL formulae

FIGURE 1: Examples of ERA, DERA and ERL formulae

3. Region-based Normalised representations and semantics

Granularity. A granularity is a measure of rational constants used in constraints. A
granularity is a pair(d,M) ∈ N × N. Let ξ1 = (d1,M1) andξ2 = (d2,M2) be two
granularities:ξ1 is finer thanξ2 and we writeξ1 � ξ2 if ∃k ∈ N∗ s.t d2 = k × d1 and
M1 ≥M2. Thesumξ1 ⊕ ξ2 is the granularity(lcm(d1, d2),Max(M1,M2)) wherelcm
stands for the least common multiple. A rationalr ∈ Q≥0 can be produced by granularity
(d,M) iff r ≤M and there existn ∈ N such thatr = n

d
. The granularity of a constrained

objectO, ξO is the less fine granularity used for producing the constantsoccurring in the
constraints. We denote byCξ(Σ), the set of constraints of granularityξ. ERAξ and DERA
ξ denotes the set of ERA and DERA with the granularityξ.
RegionsGiven a granularityξ = (d,M), two clock valuations are equivalent of they
satisfy the same constraints inCξ(Σ), when the time elapses or when clocks are reset. The
region [1] of a valuationv, [v]ξ is the set of valuations equivalent tov. The set of regions is
denoted byRegξ(Σ). Note that the size ofRegξ(Σ) is inO(2|Σ|). Given[v]ξ ∈ Regξ(Σ),
we define the[v]ξ↑= {[v′+δ]ξ | v′ ∈ [v]ξ, δ ∈ T} and([v]ξ)[xa := 0] = {[v′[xa := 0]]ξ |
v′ ∈ [v]ξ}, the regions reachable from[v]ξ after the time elapsing and the reset ofxa.

xb

xa
1

1

(a) ξ = (1, 1)

xb

xa
1

1

1
2

1
2

(b) ξ = (2, 1)

FIGURE 2: Regions withΣ = {a, b}

Figure 2(a) presents the regions forξ = (1, 1) and
Σ = {a, b}. A region is a black point, a trian-
gle, a half line or an open space. A region is de-
finable with constraints involving comparisons be-
tween two clocks. Let the regionr0 := (xa =
0 ∧ xb = 0). The regionr1 := (0 < xa < 1 ∧ 0 <
xb < 1 ∧ xa − xb = 0) is the immediate time suc-
cessor ofr0 andr2 := (0 < xa < 1∧xb = 0∧0 <
xa − xb < 1) equalsr1[xa := 0].
ξ-atomic constraints.A ξ-atomic constraint is a smallest constraint inCξ(Σ); it is a con-
straint of the form

∧

x∈XΣ
ex where ex is of the formx > M , x = M , x = c,

c < x < c + 1
d

with c < M . Note that any region[v]ξ is included in a uniqueξ-atomic
constraintg such thatv |= g. We can show that [6], for any constraintg, any granularity
ξ � ξg, g can be decomposed into a setRξ(g) of disjointsξg-atomic constraints.

Abstract representations for ERA. A ξ-abstract representation for an ERAA, is the
kripke structureRξ

A = 〈L × Regξ(Σ), (ℓ
0, [0]ξ), Cξ(Σ) × Σ,→〉 where the transitions



betweenabstractstates are such that:(ℓ, [v]ξ)
g′,a
−−→ (ℓ, ([v′]ξ)[x(e) := 0]) whenever

there exist[v′]ξ ∈ ([v]ξ↑), e = ℓ
g,a
−−→ ℓ′ such that[v′]ξ ⊆ Jg′K andg′ is atomic. As in [6],

we can show that for any ERAA, any granularityξ � ξA, SA is isomorphic toSRξ
A

.

Normalised formulaNξ(ϕ). Nξ(ϕ) is constructed fromϕ by replacing each subformula
of the form〈g, a〉ϕ (resp.[g, a]Nξ(ϕ)) with

∨

g′∈Rξ(g)
〈g′, a〉Nξ(ϕ) (resp.

∧

g′∈Rξ(g)
[g′, a]ϕ).

As in [6], we can show that for any sentenceϕ, any ERAA, any granularityξ � ξϕ,
(ℓ, v) ∈ JϕKA iff (ℓ, v) ∈ JNξ(ϕ)K

A.

Abstract semantics for ERL. The abstract semantics ofϕ, 〈[ϕ]〉 is defined by performing
an equality test between the constraints and the action in formulae and the constraints and
action labelling the transitions of ERA:〈[〈g, a〉ϕ]〉A = {ℓ | ∃(ℓ, g, a, ℓ′) ∈ EA s.tℓ′ ∈
〈[ϕ]〉

A
} and〈[[g, a]ϕ]〉A = {ℓ | ∀(ℓ, g, a, ℓ′) ∈ EA it holds thatℓ′ ∈ 〈[ϕ]〉

A
}. Observe that

this semantics is similar to the Kozen’sµ-calculus semantics [7], where ERL and ERA are
considered asµ-calculus and Kripke structure over the alphabet(Cξ(Σ)×Σ). According
to Proposition 3.1, one can adapt the model-checking resulton theµ-calculus to ERL by
choosing a granularity finer than those of the formula and theERA.

Proposition 3.1. For everyξ � (ξϕ ⊕ ξA), A |= ϕ iff (ℓ0, [0]) ∈ 〈[Nξ(ϕ)]〉
Rξ

A

In the sequel, we consider normalised formulae only.

4. Tableau for SAT and DSAT with ERL

We adapt the rules for theµ-calculus [7] to ERL by adding timing information. ERL
is a kind of Kozen’sµ-calculus augmented with clock constraints. We propose valuation-
based and region-based rules for SAT and DSAT.

Clock valuation-based systems of rules for ERL (NR and DR).In Figure 3, we pro-
pose two clock valuation-based systems of rules for ERL:NR andDR. The first system
adapted for SAT,SR is composed of five standard rules (∨, ∧, ν, µ, reg), the rulestime
andtmod. The second system adapted for DSAT,DR is composed of the standard rules,
the rulestime andtdmod. Each rule reduces the satisfiability checking of formulae in
its conclusion (below the line of the rules) to the satisfiability checking of formulae in
its premises (above the line). The rule∨, time, tmod anddtmod have more than one
premise. Except the rulereg, which abstracts the computation of fixpoint formulae, all
the other rules reduce the size of formulae in their conclusion.
{ϕ1, ϕ2,Γ}; v

{ϕ1 ∧ ϕ2,Γ}; v
(∧)

{ϕ(X),Γ}; v

{µX.ϕ(X),Γ}; v
(µ)

{ϕ(X),Γ}; v

{X,Γ}; v
(reg)Bdϕ(X) = σX.ϕ(X)

{ϕ(X),Γ}; v

{νX.ϕ(X),Γ}; v
(ν)

{ϕ1,Γ}; v {ϕ2,Γ}; v

{ϕ1 ∨ ϕ2,Γ}; v
(∨)

Γ; v; τv for eachτv ∈ Fv(Γ〈〉)

Γ; v
(time)

ϕ ∪ {ψ | [g, a]ψ ∈ Γvi}; vi[xa := 0]

{

for eachvi ∈ v↑
for each〈g, a〉ϕ ∈ τ−1(vi)

Γ; v; τ
(tmod)

{ψ |
〈g, a〉ψ ∈ τ−1(vi)
or [g, a]ψ ∈ Γvi

}; (v + δi)[xa := 0]







for eachvi ∈ v↑
for eacha ∈ Σ s.t
〈g, a〉ϕ ∈ τ−1(vi)

Γ; v; τ
(tdmod)

FIGURE 3: Valuations-based tableau rules for ERL



Let us briefly comment the non standard rules. The ruletime allows to choose the re-
duction time for existential modalities of the form〈g, a〉. It considers the set of functions
Fv(Γ〈〉) of the formτv : Γ〈〉 → T

Σ assigning a reduction time to each〈g, a〉ϕ ∈ Γ〈〉

such thatv′ = τv(〈g, a〉ϕ) implies thatv′ ∈ v↑ andv′ |= g. We defineΓ〈〉 = {〈g, a〉ϕ |
〈g, a〉ϕ ∈ Γ} andΓv = {[g, a]ϕ | [g, a]ϕ ∈ Γ ∧ v |= g}. The ruletmod applies the
reduction and adds a premise for each subformula〈g, a〉ϕ in Γ〈〉 according to its reduc-
tion time given byτ(〈g, a〉ϕ). The reduction is “non deterministic” since two premises
are created for two subformulae with equal reduction times.The ruletdmod performs a
“deterministic reduction” and adds one premise for each subset of subformulae reduced
in equal times and with a same action. Observe thattmod, tdmod are timed extensions
of the following rules defined for theµ-calculus:

ϕ ∪ {ψ | [a]ψ ∈ Γ}, for each〈a〉ϕ ∈ Γ

Γ
(mod)

{ψ | 〈a〉ψ ∈ Γ or [a]ψ ∈ Γ}, for eacha ∈ Σ s.t∃〈a〉ϕ ∈ Γ

Γ
(dmod)

Tableaux, trace and pre-models. These notions are adapted from [7, 6]. GivenSR
or DR, a valuation-based tableaufor an ERL formulaϕ is a tree the root of which is
labelled with{ϕ};0 and the nodes is obtained by applying the rules. We require that the
rule time is applicable when no standard rule is applicable; the rulestmod, tdmod are
applied just after the ruletime. Given a rule (for example∨), the reduced formula with
the valuation (for exampleϕ1∨ϕ2) in conclusion is linked to its subformula (for example
ϕ1 or ϕ2) with the valuation in a premise: a succession of such links defines atraceof
the reduction of a formula along a path of a tableau. A variableX regenerates on a trace
iff some node and its successor are labelled withX andϕ(X) respectively. Aν-trace
(resp. aµ-trace) is either finite and neither (resp. either) ends withff, nor (resp. or) with
a formula of the form〈g, a〉ϕ, or is infinite and the oldest variable that is regenerated
infinitely often is aν-variable (resp.µ-variable). Apre-modelis a sub-tableau obtained
by selecting exactly one premise for each node at which the rule ∨ or time is applied, so
that there is noµ-trace in the remaining paths.

Given a formulaϕ, let T (ϕ) andDT (ϕ) denote the tableaux forϕ constructed using
NR andDR respectively. Guided by the proofs of similar results in [6]and after we have
adapted the concept ofsignature, we can prove the following propositions.

Lemma 4.1. A HCTTS models anERL formulaϕ iff there is a pre-model inT (ϕ).

Let us sketch the proof. For (⇒), we assume that here is a HCTTSS which models
ϕ. We constructT (ϕ), then we mark the nodes with the states ofS and we select the
premises of the nodes at which the rule∨ or time is applied according to the signature
property. SinceS modelsϕ, the subtree composed of the selected nodes is a pre-model.
For (⇐), we construct a HCTTSS from the pre-model and we show thatT (ϕ) does not
contain a pre-model ifS does not modelϕ, leading to a contradiction.

Lemma 4.2. A DHCTTS models anERL formulaϕ iff there is a pre-model inDT (ϕ).

Note that checking the existence of a pre-model inT (ϕ) orDT (ϕ) may not be decid-
able since, contrarily to the case of theµ-calculus, the labels of the nodes range over an
infinite set (valuations occur labels). Moreover, the sketch of the proof above construct
witness HCTTS which modelsϕ. So, it is not immediate that the existence of pre-models
in T (ϕ) orDT (ϕ) leads to a decision procedure for SAT and DSAT since we want ERA
or DERA model. For these reasons, we consider abstract rules.



Γ; r; θ for eachθ ∈ Θr(Γ〈〉)

Γ; r
(timeξ)

ϕ ∪ {ψ | [g, a]ψ ∈ Γ}; ri[xa := 0]

{

for eachri ∈ r↑
for each〈g, a〉ϕ ∈ θ−1(ri)

Γ; r; θ
(tmodξ)

{ψ | 〈g, a〉ψ ∈ θ−1(ri)or [g, a]ψ ∈ Γ}; ri[xa := 0]







for eachri ∈ r↑
for eacha ∈ Σ s.t
〈g, a〉ϕ ∈ θ−1(ri)

Γ; r; θ
(tdmodξ)

FIGURE 4: Regions based tableau rules for ERL
Region-based tableaux for ERL (NR(ξ) andDR(ξ)). Timing context in regions-based
rules are regions parametrised with a granularityξ. The rules forNR(ξ) andDR(ξ) are
composed of standard rules∨, ∧, ν, µ, reg and the rules in Figure 4 inspired by the rules
in Figure 3. A functionθr ∈ Θr(Γ〈〉) in the ruletimeξ is such thatr′ = θr(〈g, a〉ϕ)
implies andr′ ⊆ JgK. Then, we define region-based tableaux similarly to valuation-based
tableaux and we consider a similar notion of well-founded path.

Given a granularityξ and a formulaϕ, T (ϕ, ξ) andDT (ϕ, ξ) denote the tableaux for
ϕ constructed with the rules ofNR(ξ) andDR(ξ) respectively.

Lemma 4.3.
- It is decidable andEXPTIME whetherT (ϕ, ξ) or DT (ϕ, ξ) contains a pre-model.
- If T (ϕ, ξ) contains a pre-model thenT (ϕ, ξ′) contains a pre-model for everyξ′ � ξ.
- If DT (ϕ, ξ) contains a pre-model thenDT (ϕ, ξ′) contains a pre-model for everyξ′ � ξ.

For example, let us considerϕ3 in Figure 1(e). Clearly,ξϕ3
= (1, 1). Figure 5

shows fragments ofT (ϕ3, ξϕ3
) andDT (ϕ3, ξϕ3

) (The rule time is hidden). Observe that
T (ϕ3, ξϕ3

) has a pre-model. But,DT (ϕ3, ξϕ3
) has no pre-model, since all the traces

end withff. However, using the region map in Figure 2(b) one can easily check that
DT (ϕ3, (2, 1)) contains a pre-model. This example provide a proof of Lemma 4.4 below.

Lemma 4.4. There is a formulaϕ such thatDT (ϕ, ξϕ) does not contains a pre-model
and for someξ � ξϕ, DT (ϕ, ξ) contains a pre-model.

Decidability results. We can provide, following [6], a proof of Proposition 4.1. The
proposition reduces SAT to the pre-model checking problem in T (ϕ, ξϕ).

Proposition 4.1. A formulaϕ is satisfiable iffT (ϕ, ξϕ) contains a pre-model.

Proposition 4.1 asserts that the granularity of a formula isenough to solve SAT. But,
this is not true for DSAT (see Lemma 4.4). However, we get the partial result of Proposi-
tion 4.2 by adapting our proof of Proposition 4.1.

Proposition 4.2. A formulaϕ is d-satisfiable with aDERA ξ iff DT (ϕ, ξ) contains a
pre-model.

ℓ4: {tt}; r4
ℓ2: {〈tt, a〉tt}; r2 ℓ3: {[tt, a]ff}; r2
ℓ′1: {〈g1, b〉〈tt, a〉tt, 〈g1, b〉[tt, a]ff}; r0
ℓ1: {〈g1, b〉〈tt, a〉tt ∧ 〈g1, b〉[tt, a]ff}; r0

(a) T (ϕ3, ξϕ3
)

ℓ4: {ff}; r4
ℓ3: {tt, ff}; r4
ℓ2: {〈tt, a〉tt, [tt, a]ff}; r2
ℓ′1: {〈g1, b〉〈tt, a〉tt, 〈g1, b〉[tt, a]ff}; r0
ℓ1: {〈g1, b〉〈tt, a〉tt ∧ 〈g1, b〉[tt, a]ff}; r0

(b) DT (ϕ3, ξϕ3
)

FIGURE 5: Tableaux forϕ3



Using, Lemma 4.3, we get a partial decidability result for DSAT when the granularity
of the model is known in advance.

Theorem 4.1. Given anERL formulaϕ and a granularityξ, there is a procedure that
checks whether there exists aDERA ξ that satisfiesϕ.

Let us end the section by giving some links between tableau and abstract tableau.

Corollary 4.1. T (ϕ) contains a pre-model iffT (ϕ, ξϕ) contains a pre-model

Corollary 4.1 is a consequence of Proposition 4.1. But,DT (ϕ, ξ) can not be used
to decide whetherDT (ϕ) contains a model (see Lemma 4.5). Moreover, deciding the
existence of pre-models in valuation-based tableaux is nota useful result for DSAT.

Lemma 4.5. There exists a formulaϕ such thatDT (ϕ) contains a pre-model, and for
everyξ � ξϕ DT (ϕ, ξ) does not contains a pre-model.

Formulaϕ4 (see Figure 1(e)) is a witness formula for Lemma 4.5. Indeed after each
firing of b we need an additional constant to separate the instants at which a should be
fired from those at which it should not. Since the process repeats infinitely often, there
number of required constants is infinite and it can not be generated by a granularity.

5. Concluding remarks

We have considered the DSAT problem for ERL. We have proposedtwo systems of
rules: the valuation-based and regions-based systems. We have established relations be-
tween the two systems. We have shown that the valuation basedsystem can not be used
to decide DSAT and the region-based system allow to decide DSAT when the constants
of the models is known in advance. In case of unknown constants, DSAT is left open.
Future work in this direction consider abstract rules only and the rules should handle the
introduction of new constants in deterministic models.
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