Sciences Numériques pour la Biologie …
The aim is to gather specialists of mathematical modelling for biological problems to review advances on topics with strong societal impact such that: the electroencephalography, theelectrocardiography, the epidemiology, the cancer research …
• Modelling of biological phenomena by Partial Differential Equations (for direct or inverse problems), by dynamic systems or by stochastic analysis.
• Development of numerical methods and use of the numerical simulation for the understanding of the biological phenomena.
• Mathematical study of the models of the bioprocesses and the population dynamics for the understanding and the control of the ecosystems and the development of treatment systems.
• Development of methods and mathematical and numerical technics which allow to study and to model the biological processes. Observation and optimal control of the ecosystems.
• Modelling of the eco-evolution, the cellular dynamics and the DNA.
• Modelling in cardiac electrophysiology, electroencephalography, chemotaxis.
• Problems of water treatment and biofilms.
• Statistical Processing of the signal and the images, the medical imaging.
L’objectif est de réunir des spécialistes de la modélisation mathématique de problèmes biologiques pour faire le point sur des avancées réalisées dans les domaines d’applications tels que : l’électroencephalographie, l’électro-cardiographie, l’épidémiologie, la cancérologie, … |
… et les Systèmes Complexes
Complex – Systems: Understanding natural, social, epidemiological, etc., phenomenons is becoming more and more essential to the political and economic decision makers. The sciences of complexity are becoming increasingly motivated by global development issues (ecology, public health, social stability) that concern industrialized and developing countries likewise, as a consequence of globalization.
Sciences of complexity require mastering sophisticated mathematical and computer tools and a deep understanding of the specific themes to which they apply. Hence, each specific analysis of a complex system is characterized by a type of model and a particular thematic application.
Modeling works submitted to this track should have a strong bond with their thematic application, whether in ecology, biology, epidemiology, urban dynamics, social sciences, etc. From a methodological point of view, the track welcomes mathematical modeling methods (dynamical systems, aggregation of variables, etc.), computational modeling methods (multi-agent systems, participatory modeling, etc.), and mathematical-computational hybrid methods.
Les systèmes complexes: La compréhension des phénomènes naturels, sociaux, épidémiologiques, etc., du monde actuel, devient de plus en plus indispensable aux décideurs politiques et économiques. Les sciences de la complexité connaissent un développement croissant motivé par les enjeux globaux (écologie, santé publique, stabilité sociale) qui concernent, conséquence de la mondialisation, autant les pays industrialisés que les pays en développement. |
Nehla Abdellatif (ENSI-LAMSIN, Tunisie) Mejdi Azaiez (INP-Bordeaux, France) Mustapha Adimy (INRIA, France) Faker Ben Belgacem (UTC, France) Slimane Ben Miled (FST-LAMSIN, Tunisie) Adel Blouza (Université de Rouens, France) Jean Clairambault (INRIA, France) Fabien Campillo (INRIA, France) Nicolas Champagnat (Inria, France) Nadia Chouaieb (ENIT-LAMSIN, Tunisie) Henda El Fekih (ENIT-LAMSIN, Tunisie) Jean Frédéric Gerbeau (INRIA, France) Abderrahmane Habbal (INRIA, France) Ridha Hambli (Université d’Orléans, France) Hassan Hbid (Université de Marrakech, Maroc) Meriem Jaidane (ENIT-U2S, Tunisie) Claude Lobry (Université de Nice, France)o |
John H. Maddocks (EPFL, Suisse) |